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1 Executive Summary

Our work on this program began in 2004 with a long-shot: We would attempt to construct

a new first-of-kind source of biphotons and conditional single photons that have a linewidth

on the scale of atomic transitions, that is about several MHz. Such photons are about

a microsecond long. A single photon therefore has a physical length equal to that of a

football field. Our proposed technique was based on the use of electromagnetically induced

transparency and slow light, where basically the temporal length of the biphoton is equal

to the physical length of our atomic sample (about two cm) divided by the optical group

velocity. This idea worked almost immediately and the publication “Generation of Paired

Photons with Controllable Waveforms,” appeared in Physical Review Letters in May of 2005.

As time progressed, the objectives of this program, with joint support from AFOSR and

ARO, was aimed at both improving the performance of this new light source, and also at

demonstrating novel effects that are only possible with long biphotons. Work on a new

quantum effect termed as nonlocal modulation and requiring the use of short biphotons was

included in the program.

We begin by summarizing a key property of time-energy entangled biphotons. This is: if

an observer at point A chooses to measure the frequency of an arriving photon he will then

know to high accuracy the frequency of the photon which will be measured by an observer

at point B. But instead, if the observer at point A chooses to measure the time of arrival of

a photon at his location, he will then know, again to high accuracy, the time of arrival of
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the photon at point B. The accuracy of these measurements is not limited by the Heisenberg

uncertainty principle.

We turn next to what is meant by long and short. Typical biphotons as generated by

nonlinear optical crystals have temporal lengths in the range of between 0.1 ps and 10 ps.

Such photons are not resolvable by presently existing photo detectors. These detectors,

measure whether or not a photon is present, but may not be used to examine the functional

form of the photonic wave packet.

A key accomplishment of the present program was the generation of photons whose length

could be continuously varied from 50 to 900 ns. Of importance, the line width of these pho-

tons is less than the natural linewidth of the rubidium vapor that was used to produce them.

This is important because optical nonlinearities when produced using electromagnetically

induced transparency continue to increase in the subnatural linewidth regime and in the

absence of dephasing may be made arbitrarily large.

We mention a surprise that occurred during this work. In the course of observing long

biphotons with a length determined by the slow optical group velocities, we found that

the photonic wave packets had a sharp leading edge spike on their front edge. Following

a suggestion by Dan Gauthier we recognized that this front edge spike is a Sommerfeld-

Brillouin precursor. This observation is important because it clarifies, for both slow light

and fast light, that information will always be transmitted at the speed of light in vacuum.

In January 2008 we recognized that we had the capability to modulate single photons for

the first time. To do this we used the Stokes photon of a biphoton pair to set the time origin

for electro-optic modulation of the wave function of the anti-stokes photon. With the time

origin determined, the modulator could arbitrarily modulate either the amplitude or phase

of the anti-stokes photon. The technique therefore provides the technology for studying the

response of atoms to shaped single-photon waveforms on a time scale comparable to the

natural linewidth of target atoms.

The next step in our work in modulating biphotons was the development of a method for

measuring their length using slow detectors. The essential idea is that modulation in the time

domain followed by slow integration constitutes a Fourier transformation. The experimental
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technique is to measure the coincidence count rate between single photon counting modules as

a function of an applied sinusoidal frequency. The inverse Fourier transform of the data then

yields the biphoton waveform. Though this experiment was a proof of principle experiment,

ultimately it could be used to measure wavepacket profile of biphotons when sufficiently fast

photo detectors are not available.

In recent months we have demonstrated an important extension of our work on modulating

single photons. This is the application of spread spectrum techniques at the single photon

level. Spread spectrum is well known in the communications industry as a technique for

avoiding interference and jamming, and at times increasing information capacity. Our work

is the first demonstration of this technique to single photons. As described in this report this

has allowed us to send a single photon with a known temporal shape through an environment

of thousands of times more intense background photons deliberately produced by a jamming

laser. We have thus shown that a single photon as used for to send a secure cryptographic

key may be deliberately hidden, and recovered at the receiving end.

During the course of this work we recognized that there should be a new quantum effect

that we have termed as nonlocal modulation. Assume that single and idler photons pass

through sinusoidal phase modulators located at different locations. These modulators are

driven at the same modulation frequency and are connected by cable such that their relative

phase may be varied. After passing through the modulators the single and idler photons are

dispersed, for example by a prism, and the relative positions of the single and idler photons

are correlated. We find and have experimentally demonstrated : When the modulators are

run with the same phase the modulation depths add; when they are run in phase opposition

the modulation depths subtract. Two distant modulators with the same modulation depth

and opposite phase therefore have the same frequency correlation as when both modulators

are absent. This effect is entirely quantum mechanical. Mathematically it results because,

quantum mechanically, one adds probability amplitudes before squaring, while classically

one squares before adding.
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Figure 1: Energy Schematic for Biphoton Generation

2 First Experiments

Figure 1 shows an energy schematic of the process of the biphoton generation process. In

the presence of two counter-propagating cw pump and coupling lasers paired spontaneous

Stokes and anti-Stokes photons are generated and propagate in opposite directions. The

anti-Stokes photon has a center frequency equal to that of a highly-absorbing transition in

the atom. The coupling laser creates transparency and causes the anti-Stokes wave to travel

at a slow and variable group velocity. This group velocity determines the width of the paired

photon wave packet.

Our first experiments demonstrating the generation of 100 ns time scale biphotons were

done using a standard-design all metal spherical MOT with an atom cloud with a diameter

of a about 2 mm. In order to contrast with the results of the greatly improved 2D MOT

described below, Figures 2 and 3 show these first results. The shape of the wave packet

depends on the relation of two characteristic times that are the essence of this work. The

first is a Rabi-like coherence time and the second is the group delay time. The experimental

result in the regime where the Rabi time is less than the group delay time is shown in Fig. 2.

One observes behavior like that of a single atom where, at t = 0, a Stokes photon causes the

excitation of the upper state and the probability amplitude oscillates between the ground

and upper state. When the group delay is sufficiently large that the delay time is longer

than the Rabi time, then the wave packet approximates the correlation function of an ideal

parametric emitter. Here, the width of the wave packet is approximately equal to the delay

time. Figure 3 shows experiment and theory as the parameters approach, but are not quite

in the ideal group delay regime.
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Figure 2: Generation in the oscillatory regime

Figure 3: Generation nearing the group delay regime

In a second experiment still using the spherical trapped atom geometry, in May of 2005

we reported an improvement for generating narrow band time-energy entangled photons.

Here, working in a standing wave right angle geometry, we use a single driving laser with

two AOM’s to parametrically pump the 87Rb atoms, and also to trap and cool the Rb

atoms. This technique results in a modification and narrowing of the Glauber intensity

correlation function, and at the same time the elimination of Rayleigh scattering. An energy

level diagram, and the geometry and timing for the experiment are shown in Fig. 4. We

replace the three driving lasers of the earlier experiment with a single (Ti:Sapphire) laser.

The Ti:Sapphire laser frequency is down shifted by 123.5 MHz so as to be resonant with

the |5S1/2, F = 2〉 → |5P3/2, F = 2〉 transition. This frequency, denoted by ωp, acts as
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Figure 4: Energy schematic for biphoton generation using a single pumping laser. (a) Energy
level diagram. (b) Geometry (c) Timing: The photon generation window of 500 µs is followed
by a trapping and cooling period of 4.5 ms. (d) Pumping: The Ti:Sapphire laser is up-shifted
to trap and cool atoms and down-shifted to serve as a pump for the paired photon generation
process.

the coupling laser of earlier experiments and creates transparency on the |5S1/2, F = 1〉 →
|5P3/2, F = 2〉 transition. This same frequency pumps the four wave down-conversion process

that generates the paired photons. To cool and trap 87Rb atoms the incident Ti:Sapphire

laser beam is up-shifted by 123.5 MHz to 20 MHz below the |5S1/2, F = 2〉 → |5P3/2, F = 3〉
transition (not shown). This is done periodically so as to create a 10% duty cycle, with the

trapping process occurring for 4.5 ms, followed by an experimental window of 500 µs. The

trapping magnetic field remains on during this experimental window.

Of importance we find that the use of a retro-reflected laser for both pumping and coupling

results in an unexpected change in the shape of the Glauber intensity correlation function for

the Stokes and anti-Stokes photons. In the earlier Stanford work the shape of the correlation

function was set by the longer of two characteristic times. These times are the group delay

time between the Stokes and anti-Stokes photons, and the inverse Rabi frequency of the

coupling laser. Here, because of the much larger Rabi-frequency (200 MHz) of the common

pump and coupling laser, the group delay time is short and the Rabi-period dominates.

We therefore expect a damped- periodic correlation function similar to that of the earlier

work with a period of about 5 ns. We find experimentally and verify theoretically that the

interference fringes (in the x-direction) that are caused by the counter-propagating pumping

beams result in a reduction of the outer Rabi side lobes of the intensity correlation function.
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Figure 5: Coincidence count rate as a function of the delay between detected photons. (a)
Pump power = 160 mW; Ωc0 = 80γ13 and Ωp0 = 140γ13. (b) Pump power = 40 mW,
Ωc0 = 40γ13 and Ωp0 = 70γ13. The pump is tuned to resonance with the |2〉 → |3〉 transition.
Data (⋄) was collected over 200 s. Theoretical curves (solid lines) are scaled vertically by a
common factor and are averaged over a 1 ns bin.

These results are shown in the Fig. 5 where we plot coincidence counts versus delay time

between the Stokes and anti-Stokes photons. Here, the pump laser is tuned to resonance of

the |2〉 → |3〉 transition. Since the Stokes and anti-Stokes photons are present in both fibers,

the correlation function is symmetric.

3 Subnatural Linewidth Biphoton Generation with a

2-D MOT

A major breakout is this program occurred with the successful operation of a two-dimensional

MOT which allowed much higher optical depth and performance in all respects. Of particu-

lar importance, it allowed, for the first time, the generation of photons having a sub-natural

linewidth. Figure 6 shows both experimental configuration (geometry) and mechanism of

parametric paired-photon generation. In contrast to previous (spherical) MOT, the new

2-D 85Rb MOT has a cigar shaped atom cloud(∼1.7 cm long and an aspect ratio of 25)

and consequently a large optical depth in the longitudinal direction; moreover, its cylindri-

cal quadrupole trapping field results in minimal longitudinal magnetic field gradient and
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Figure 6: Upper: Biphoton generation in a double-Λ system. (a) Experimental configura-
tion. F1 and F2 are narrow-band optical frequency filters. (b) 85Rb energy level diagram.
In the presence of counter-propagating pump (ωp) and coupling (ωc) beams, Stokes (ωs )and
anti-Stokes, (ωas) photons are generated into opposing single-mode fibers. Lower: 2-D MOT
apparatus. The vacuum cell is 6 cm size ceramic structured octagon. The cell is located in
the middle of water cooled trapping coil(racetrack-shaped cage).

hence greatly reduces the inhomogeneous Zeeman broadening of the m-states of the 5S1/2

level. The experimental cycle comprises 4.5 ms of trapping time and 0.5 ms paired photon

generation window. At the end of the trapping cycle, the rubidium cloud is prepared in

5S1/2 level by turning off the repumping laser 0.3 ms before turning off the trapping laser;

counter-propagating, circularly polarized, cw pump (ωp) and coupling (ωc) lasers are subse-

quently turned on and phase-matched, paired Stokes (ωs) and anti-Stokes (ωas) photons are

spontaneously generated and propagate in opposite directions as shown in the figure.

The optical depth of the 2-D 85Rb MOT can be varied up to 62, which gives us enough

parameter space to verify the relation between the optical group delay and the length of
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Figure 7: Biphoton wave packet data for three slow group delay cases. The upper row plots
are anti-Stokes EIT scan data(◦) and EIT fit(blue curve), the lower row plots are paired-
photon coincidence count data(+) and predicted wave packet shape with time bin width of 1
ns for 800 s(lower row). Propagation delay of anti-Stokes pulse(red traces in inserts of lower
row plots) are also presented for three slow group delay((τg) cases. Experimental parameters
are: Left: (τg ∼ 50ns) OD=7, Ωc = 4.20γ13, Ωp = 1.16γ13, and ∆p = 48.67γ13. Middle:
(τg ∼ 320ns) OD=53, Ωc = 4.20γ13, Ωp = 1.16γ13, and ∆p = 48.67γ13. Right: (τg ∼ 900ns)
OD=53, Ωc = 2.35γ13, Ωp = 1.16γ13, and ∆p = 48.67γ13.

the biphoton waveform. Figure 7 shows sets of anti-Stokes EIT scan and paired-photon

coincidence counts for three anti-Stokes EIT group delay cases, which is controlled by varying

the optical depth and the coupling laser power(τg ≃ (2γ13/|Ωc|2)NσL, where NσL is the

optical depth and γ13 is the dephasing rate of level |3〉). The trapping laser used for these

experimental runs has a power of 160 mW, a beam diameter of 2 cm, and is red detuned by

20 MHz from the |5S1/2, F = 3〉 → |5P3/2, F = 4〉 transition. A repumping laser is locked

to the |5S1/2, F = 2〉 → |5P3/2, F = 2〉 transition, has a power of 80 mW, and overlaps one

of six trapping beams. The pump laser is circularly polarized (σ−), has a 1/e2 diameter of

1.46 mm, and is blue detuned from the |1〉 → |4〉 transition by 146 MHz, i.e. ∆p = 48.67γ13.

The coupling laser is circularly polarized (σ+), has a 1/e2 beam diameter of 1.63 mm and

is on resonance with the |2〉 → |3〉 transition. The counter-propagating pump and coupling

beams are collinear and set at a 2 degree angle from the longitudinal axis of the MOT. The

Stokes (σ−) and anti-Stokes (σ+) photons are coupled into opposing single mode fibers after
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passage through λ/4 wave plates and polarization beam splitters (PBS). The Stokes and

anti-Stokes fiber coupling efficiency is 70% and the 1/e2 waist diameter of their foci is 220

µm.
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Figure 8: (a) Measured correlation time vs measured anti-Stokes group delay. The solid line
is a linear least squares fit. (b) Paired counts in a 1 ns bin in 800 s as a function of the
optical depth.

As shown in Fig. 7, the temporal length of biphoton wavepacket generated in high OD case

are much longer(by more than one order) than previously reported in our phase I research.

It also means that the generated biphoton has much narrowed bandwidth. The predicted

biphoton packet waveforms in lower row plots of Fig. 7 are computed with all parameters

obtained from the EIT measurements and vertically scaled to fit the experimental data. The

calculated biphoton linewidths are 9.66, 2.36 and 0.75 MHz respectively. These linewidths

are comparable to the measured EIT bandwidths and in the latter two cases are less than the

6 MHz natural linewidth of Rb D line. The biphoton generation now is in the linear group

delay regime where τg > τr and the correlation width directly follows group delay time. This

is shown in Fig. 8(a).

Having taken into account the filter and etalon transmissions, the fiber to fiber coupling

efficiency, the detector quantum efficiencies and the duty cycle. For the conditions of Fig. 7,

we observe a total of 3213, 31674, and 22000 paired counts in 800 seconds, which correspond

to generation rates of 1275, 12569, and 8730 pair/s, respectively. Higher generation rates

can be achieved by increasing the pump laser power. With Ωp = 6.88γ13, the paired photon

generation rates are 4.0×104 and 9.0×104 pair/s at OD=17 and 30, respectively. Figure 8(b)
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shows that the number of paired counts varies linearly with the optical depth. Though

the generation rate per spectral bandwidth varies as the square of the optical depth, the

bandwidth reduces linearly with this depth leading to the linear dependence. Experimentally,

under optimum conditions, we observe 74% of the Stokes photons to be paired. We also

observe that all of the correlation data violate the Cauchy-Schwarz inequality by as much as

a factor of 11600.

It is noticeable that there is a sharp peak at the leading edge of the correlation data

generated for high optical depth case as shown in lower plots in middle and right column of

Fig. 7. This feature is Sommerfeld-Brillouin precursor type as in the case for propagating

classical wave packets. The physical picture is the following: the detectors register biphoton

coincidence counts versus the time τ = tas − ts; the earliest portion of the biphoton wave

packet comes from the high frequency portion of the spectrum, which is not in the range of

large group delay, and is thought of as the Sommerfeld precursor. At slightly later times the

low frequency Brillouin components arrive at the detector and beat with the simultaneously

arriving high frequency components. Though precursors are now understood in the optical

region and have even been observed long ago with correlated gamma-ray photons, our work

reports the first observation of precursors as measured by single photon correlation.

For more details please see: 1) Shengwang Du, Pavel Kolchin, Chinmay Belthangady,

G. Y. Yin, and S. E. Harris, ”Subnatural Linewidth Biphotons with Controllable Temporal

Length,” Phys. Rev. Lett. 100, 183603 (May, 2008); 2) Shengwang Du, Pavel Kolchin,

Chinmay Belthangady, G. Y. Yin, and S. E. Harris, ”Observation of Optical Precursors at

the Biphoton Level,” Optics Letters 33, 2149 (September, 2008).
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4 Theory of EIT- based Paired Photon Generation

Our theoretical model is based on paired photon generation in the double-lambda atomic

system. We first reexamine the conditions required for the system to operate in the group

delay regime. We find that the optical depth of the atomic system has to be sufficiently high

in order to avoid the filtering of the generation bandwidth of paired photons by the trans-

parency window. Second, we have extended the theoretical treatment beyond the ground

state approximation. This allows us to properly include and analyze the effect of Langevin

noise fluctuation on the atomic system and solve the problem of its return to the ground state

after the emission of Stokes and anti-Stokes photon pairs. We also addressed the important

questions: 1) “What are the effects of the optical thickness of the atomic sample on paired

and single photon generation?” 2) “Does every Stokes photon have its paired anti-Stokes

photon?”

With low parametric gain and high optical depth we show that the system can produce

highly correlated photon pairs. The shape of the intensity correlation function and the

emission bandwidth depend on the coupling laser Rabi frequency and the optical depth of the

atomic sample. Compared to SPDC, paired photon generation in the double-lambda atomic

system is affected by Raman gain in the Stokes channel and EIT in the anti-Stokes channel.

EIT, through the absorption at the poles, cuts the emission bandwidth. In order to enter

a regime where the EIT window is sufficiently large and therefore the emission bandwidth

is controlled to a large extent by the phase-matching process in the presence of large group

delay, the optical depth of the atomic sample has to be larger than 10. High optical depth

substantially reduces the influence of Langevin noise fluctuations and Raman scattering on

paired photon generation so that the Stokes and anti-Stokes photons are generated mostly

in pairs.

For more details please see: P. Kolchin,“Electromagnetically-Induced-Transparency-Based

Paired Photon Generation,” Phys. Rev. A 75, 033814 (March 2007). Kolchin’s dissertation

chapter 4 “Theory of EIT based Paired Photon Generation” is included in this report as

Appendix C.

13



5 Electro-Optic Modulation of Single Photons

A highlight of our work on this DARPA program has been the demonstration of conditional

shaping of single photon waveforms using electro-optic modulators. We use the Stokes photon

of a biphoton pair to set the time origin for electro-optic modulation of the wave function of

the anti-Stokes photon. This technique allows arbitrary control of both phase and amplitude

of single photons. A key requirement for this modulation scheme is that the temporal length

of biphoton wavepacket, which is represented by correlation time in experiment, is much

longer than modulation response time designed for experiment. The subnatural linewidth

biphoton source described in the previous section producing biphotons with correlation times

adjustable in the 50-900 ns range is ideally suited for this application. Our single photon

counting modules(about 350 ps of timing resolution) and data system has fast enough tem-

poral resolution to observe AM modulation in this work.
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Figure 9: Schematic of paired photon generation and conditional modulation. A Stokes
photon detected by an SPCM sets the time origin for shaping the anti-Stokes photon with
an electro-optic modulator. To within the accuracy of the SPCM, this allows shaping of
both the amplitude and phase of the anti-Stokes photon.

Figure 9 shows the schematic of the experiment. We use counterpropagating cw pump

and coupling lasers to generate time-energy entangled pairs of Stokes and anti-Stokes photons

which propagate in opposite directions and are collected into single mode fibers as described

in section A. The detection of the Stokes photon at D1 sets the time origin for firing the

function generator that drives the electro-optic modulator which in turn modulates the anti-

Stokes photon. Verification of the single photon nature of the modulated anti-Stokes photon
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is done using a 50-50 beam splitter and detectors D2 and D3. Their coincidence data G
(2)
23 (τ)

is expected to show a dip at τ = 0 proving nonclassical nature of modulated anti-Stokes

signal.

The electro-optic amplitude modulator consists of phase modulators in both arms of a

Mach-Zehnder (MZ) interferometer. The degree of phase control in both arms depends on

the type of the modulator. We use a z-cut modulator that requires Vπ = 1.75 volts to

cause the π phase shift required to go from minimum to maximum transmission and can

be operated at a maximum frequency of 10 GHz. One port of the output beam splitter

of the MZ interferometer is terminated so that the portion of the photon wave function

that is not transmitted is lost. In general, if a Stokes photon is detected at time t1, and

the modulator is activated conditioned on this detection then, in the Heisenberg picture,

the anti-Stokes operator at the output of the modulator is related to the input operator

by âout(t2) =
∫

g(t2, t
′
2)âin(t′2)dt′2. If there are no dispersive elements, then to within an

unimportant phase factor we may write âout(t2) = m(τ)âin(t2) . The correlation function in

the presence of the modulator is related to that in the absence of the modulator by

G(2)
m (τ) = |m(τ)|2G(2)(τ) (5.1)

With the biphoton wavefunction given by Ψ(t1, t1 + τ) the modulated (conditional) single

photon wavefunction is m(τ)Ψ(t1, t1 + τ). We adjust the bias voltage at the input of mod-

ulator so that the output of the modulator m(τ) is related to the input voltage V (τ) by

m(τ) = sin [φ(τ)] exp [iαφ(τ)], where φ(τ) = πV (τ)/(2Vπ), and α is a phase modulation

parameter. For a z-cut amplitude modulator as used here α = 0.75, but may be eliminated

by using an x-cut modulator.

The principal experimental results of this work are shown in Figure 10. In part (a), the

modulation signal, shown as an inset, is a set of two square pulses. Of importance, there is

no vertical scaling between the modulated and non-modulated waveforms. In Fig. 10(b),

we show photons modulated with two different waveforms. In the first case the modulator

is driven with a gaussian pulse. In the second case we design the function generator output

so as to compensate for the nonlinear distortion of the modulator in such a way that the

output of the modulator is an exact rising exponential.
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Figure 10: D1-D2 coincidence counts in a 1 ns bin as a function of the delay between
Stokes and anti-Stokes photons. (a) Modulated (N) and unmodulated (�) waveforms. (b)
Waveforms with Gaussian (�) and rising exponential (N) shapes. The experimental data (�,
N) were collected over 2000 s. The solid curves for cases (a) and (b) are plotted from theory.
The inset in part (a) is the scope trace of the output voltage of the function generator.

We define the retrieval efficiency, ER of a paired photon source as the probability to gener-

ate a single anti-Stokes photon on the condition that its paired Stokes photon is detected. For

the non-modulated photon we measure ER = 3.5%. When losses at the beamsplitter, modu-

lator, filters, fiber to fiber coupling and detector efficiency are backed out, this corresponds to

a retrieval efficiency of 55%. For the modulated photons the measured retrieval efficiencies of

the two square pulses, the rising exponential and gaussian waveforms are ER = 1.3%, 0.61%

and 0.9% respectively. With losses backed out these efficiencies are 21%, 9.4% and 11.2%

respectively.

Since single photons incident on a beamsplitter must go into one output port or the other,

in the ideal case where there are no two-photon events and there is no excess scattered light,
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Figure 11: (color online) Conditional three-fold correlation function g
(2)
cond(0) as a function

of the Stokes rate for unmodulated (�) and modulated (△) single-photon generation. The

dashed curve shows the theoretical limit for g
(2)
cond(0) in the absence of excess light scattering

(see text).

we would expect no three-fold coincidences at the detectors. A measure of the quality of

heralded single photons that quantifies suppression of two photon events is given by the

conditional correlation function:

g
(2)
cond(0) =

N123N1

N12N13
. (5.2)

Here N1 is the number of the Stokes counts at D1, N12, and N13 are the number of two-fold

coincidence counts within a time window Tc at detectors D1, D2 and D1, D3; and N123 is

the number of three-fold coincidence counts within this same time window.

In Figure 11 triangles and squares show measured g
(2)
cond(0) versus Stokes rate with and

without modulation. The modulation is done with the same signal as in Fig. 10(a). We

set Tc equal to the nominal length of the unmodulated biphoton (285 ns). At a Stokes rate

of 2.2 × 104 sec−1 which corresponds to Ωp = 0.26 Γ3, we obtain g
(2)
cond(0) = 0.2 ± 0.04 and

g
(2)
cond(0) = 0.21± 0.07 for the unmodulated and modulated waveforms respectively. The fact

that the measured g
(2)
cond(0) is less than 0.5, (the limiting value for a two photon Fock state),

is indicative of the near-single photon character of the light source.
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Because there is a small probability for the parametric down conversion process to generate

multiple pairs of biphotons, even in the absence of spurious light scattering, the conditional

correlation function is not zero. The dashed curve In Fig. 11 shows the theoretical prediction

for the conditional correlation function that results from such multiple scattering events.

Because of light scattering from both the pump and coupling lasers, the experimental curves

lie above this limiting value.

We perform two control experiments: In the first we remove the 30 m long optical fiber

so as to modulate the uncorrelated background noise in the tail of the correlation function.

Here, we measure g
(2)
cond(0) = 1.2. In the second experiment we apply modulation at random

times, using an external 10 MHz digital signal as a trigger for the function generator. As

expected, we observe a reduced rate of paired counts and no change in the shape of the

correlation function.

The method demonstrated in this work might be used to optimally load a single photon

into an optical cavity, or instead, to study the transient response of atoms to different single

photon waveforms. In the context of light-matter interfaces, it may improve the efficiency

of storage and retrieval of single photons in atomic ensembles. For quantum information

applications, both amplitude and phase modulators could be used to allow full control over

the single photon waveforms. For example, one could a construct a single photon waveform

that is a train of identical pulses with information encoded into the relative phase differ-

ence between consecutive pulses. The importance of the electro-optic method is its speed

and ability to modulate phase as well as amplitude. The technique provides the technol-

ogy for studying the response of atoms to shaped single photon waveforms on a time-scale

comparable to the natural linewidth.

For more details please see: P. Kolchin, Chinmay Belthangady, Shengwang Du, G.Y. Yin,

and S.E. Harris, “Electro-Optic Modulation of Single Photons,” Phys. Rev. Lett. 101,

103601 (September, 2008).

18



6 Modulation and Measurement of Time-Energy En-

tangled Photons

In this section of the final report, we extend our work on the modulation of single photons to

the modulation of biphotons. The essential difference is that we no longer measure and set

the timing by the measurement of a single photon. Instead, biphoton pairs arrive at random

at their respective detectors. A highlight of this work is the invention and first experimental

demonstration of a Fourier technique that allows the measurement of fast biphotons using

slow detectors. Figure 12 shows (a) the schematic of our proof-of-principal experiment and

(b) the laser/rubidium-atom interaction diagram for paired photon generation. Parametri-

cally down-converted spontaneous signal and idler photons, or as in the experiment of this

work, Stokes and anti-Stokes photons, are incident on synchronously driven sinusoidal am-

plitude modulators. Without any modulation, in general, the setup will directly yield the

Glauber correlation function G(2)(τ), where τ is the relative arrival time of the signal and

idler photons, with its time resolution limited by the speed of photon detector (SPCM) and

TDC system. As shown below, our new method, by adding AM photon modulation, will give

temporal biphoton correlation measurement with time resolution beyond the SPCM-TDC

limit.

When amplitude modulators m1(t) and m2(t) are introduced between the down conversion

source and the detectors, the modulated correlation function is then written as

G
(2)
M (t, t + τ) = |m1(t)|2 |m2(t + τ)|2 G

(2)
0 (τ) (6.1)

where the subscripts M and 0 indicate cases of modulation on or off. In real experiments,

photons arrive at a random time t which is averaged out over the data collection period T:

G
(2)
M (τ) = M(τ)G

(2)
0 (τ),

M(τ) =
1

T

∫ T

0

|m1(t)|2 |m2(t + τ)|2 dt, (6.2)

where M(τ) is the intensity correlation function of the modulators in the signal and

idler channels. If both channels are modulated by sinusoidal amplitude modulators with
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frequency ω and a common phase ϕ, that is by modulators m1(t) = m2(t) = cos(ωt + ϕ),

then, irrespective of this phase, M(τ) = 1/4 + 1/8 cos(2ωτ).

If the detectors are slow in the sense that they integrate over the length of the bipho-

ton wave packet , but short as compared to the inverse rate of biphoton generation, the

measurement becomes an integral

∫ ∞

0

G
(2)
M (τ, ω)dτ = 1/8

∫ ∞

0

[2 + cos(2ωτ)]G
(2)
0 (τ)dτ. (6.3)

We neglect the DC term and normalize to obtain the Fourier cosine transform pair

F (2ω) =

√

2

π

∫ ∞

0

G
(2)
0 (τ) cos(2ωτ)dτ,

G
(2)
0 (τ) =

√

2

π

∫ ∞

0

F (2ω) cos(2ωτ)dω. (6.4)

In the measurement procedure, F (2ω) is the measured coincidence count rate between low

speed single photon counting modules (SPCMs) as a function of the sinusoidal modulation

frequency ω. The slow detection system (SPCM+TDC) means that hardware integrates

signals over τ , which is the relative arrival time of the signal and idler photons. We then

apply the above inverse Fourier cosine transform to yield the Glauber correlation function

G
(2)
0 (τ) and therefore the square of the absolute value of the biphoton wavefunction.

Our experiment makes use of long biphotons that are produced using the techniques of

electromagnetically induced transparency and slow light. The use of long biphotons allows

us to compare the correlation function measured by our Fourier transform technique with

a direct measurement using fast detectors and a TDC. The experimental configuration is

shown in Fig. 12(a). Paired photons are generated with cold Rb atoms using the method

of Balic et al. We apply strong counterpropagating pump and coupling lasers (not shown)

to produce phase matched counter-propagating pairs of time-energy entangled Stokes and

anti-Stokes photons. We use a 85Rb two-dimensional magneto-optic trap with an optical

depth which can be varied between 10 to 60 to generate biphotons with temporal lengths

between 50 and 900 ns. The inset in Fig. 13(a) shows the biphoton wavefunction obtained at

an optical depth of 35 as directly measured using a TDC. Two features are of interest. First,
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Figure 12: (a) Schematic of experiment. Long biphotons are generated in the cold-atom Rb
cell. Using an optical fiber, the anti-Stokes photon is delayed by 175 ns, and the photons are
modulated by synchronously-driven sinusoidal modulators before correlation detection with
a time-to-digital converter. (b) Energy level diagram for paired photon generation in Rb.

the width of the wavefunction is determined by the slow group velocity of the anti-Stokes

photon and varies linearly with the optical depth. Second, the distinctive sharp feature at

the leading edge is a Sommerfield-Brillouin precursor that ensures that the earliest signal

reaches a detector at the speed of light in vacuum.

The generated Stokes and anti-Stokes photons are transmitted through 10 GHz electro-

optic amplitude modulators (Eospace Inc.) with a half-wave voltage, Vπ of 1.3V. To obtain

a perfectly sinusoidal output, the modulators are biased at maximum transmission and the

input voltage is varied linearly using a triangular waveform that varies between −Vπ and +Vπ.

This waveform is generated by a fast function generator (Tektronics AFG3252) with two

output channels whose frequencies and phases can be varied independently. The modulated

photons are then sent to SPCMs (Perkin Elmer SPCM-AQR-13), which are connected to the

start and stop inputs of a TDC (Fast-Comtec TDC 7886S). Coincidence counts are binned

into histograms and plotted as a function of the time difference between the detection of a

Stokes and an anti-Stokes photon.

In Fig. 13 (color online) we demonstrate the modulation of a biphoton wavefunction. The

data are recoded by binning coincidence counts versus time into 1 ns bins. In Fig. 13(a), the

21



0

400

800

100 200 300 400

0

1000

2000

100 200 300 400

0

200

400

600

100 200 300 400

(a)

(b)

Time (ns)

C
o
in

c
id

e
n
c
e
 c

o
u
n
ts

 (
in

 3
0
0
s
)

C
o
in

c
id

e
n
c
e
 c

o
u
n
ts

 (
in

 3
0
0
s
)

Figure 13: (color online) Modulation of the biphoton correlation function. (a) m1(t) = 1 and
m2(t) = cos(ωt + ϕ). The inset in (a) shows the correlation function with both modulators
open. (b) m1(t) = m2(t) = cos(ωt + ϕ). Here ω = 2π× 35 ×106.

Stokes modulator is turned off and is biased at maximum transmission; and the anti-Stokes

modulator is driven at 35 MHz. In agreement with theory, the biphoton wavefunction is not

modulated. In Fig. 13(b), both modulators are modulated at 35 MHz with the same, but ar-

bitrary, phase. The correlation function is now modulated at twice the applied frequency, i.e.

at 70 MHz. When driven by non-sinusoidal waveforms, the correlation function is modulated

by the cross-correlation of the two modulating signals. In agreement with Eq. (6.2), we have

verified that when the two modulating signals are square waves with the same frequency, the

correlation function is modulated by a triangular function.

We next demonstrate the Fourier measurement technique. A 35 m long polarization-

maintaining fiber is used to delay the anti-Stokes photon by 175 ns in the experiment. The

modulators are driven synchronously at frequencies between 0 and 30 MHz. To simulate

slow detectors, we bin coincidences into 1 µs bins, and since the temporal extent of the

waveform is less than 1 µs, the entire biphoton is contained within the first time bin. From

the Fourier transform property that delay in the time domain corresponds to oscillation in

the frequency domain, the plot of coincidence counts versus modulation frequency shows

ripples with a frequency (5.7 MHz) equal to the inverse of the time delay. We show two

22



(a)

(b)

Cosine Transform

Fast Detector

2 x Modulation Frequency (MHz)

C
o
in

c
id

e
n
c
e
 c

o
u
n
ts

 (
in

 2
0
0
 s

)
C

o
in

c
id

e
n
c
e
 c

o
u
n
ts

 (
in

 8
0
 s

)

2 x Modulation Frequency (MHz)

0

50

100

150

200

250

300

350

0 100 200 300 400 500

C
o
in

ci
d
e
n
ce

 c
o
u
n
ts

 (
in

 2
0
0
 s

)

Time (ns)

(c)

(d)

Cosine Transform

Fast Detector

C
o
in

c
id

e
n
c
e
 c

o
u
n
ts

 (
in

 2
0
0
 s

)
C

o
in

c
id

e
n
c
e
 c

o
u
n
ts

 (
in

 2
0
0
 s

)

4000

6000

0 10 20 30 40 50
6000

8000

10000

12000

0 10 20 30 40 50 60

-500

0

500

1000

1500

2000

2500

0 100 200 300 400 500
Time (ns)

Figure 14: Fourier Transform measurement technique at an optical depth of 15(Left) and
35(Right). Upper: Frequency domain data, Lower: Fourier Cosine transforms (red) of
corresponding frequency domain data, and real-time fast direct temporal correlation data
(blue). The term modulation frequency on the x-axis of (a) and (c) refers to the applied
frequency. The observed modulation frequency [Eq. (6.4)] is a factor of 2 higher.

data sets in Fig. 14 for optical depth of 15 (left) and 35 (right), for relatively short and

long biphoton wave packets, respectively. In Figs. 14(b) and (d), we compare the biphoton

wavefunction as directly measured with 1 ns bins (blue line) to the Fourier cosine transform

of the traces in Figs. 14(a) and (c), (red line), vertically scaled to match the peak value. We

find reasonable agreement between the two methods. We note that the sharp spike in the

temporal trace near t = 0 results from the DC component in the frequency domain trace.

We have shown how biphotons may be modulated, and how this modulation may be used

to measure the magnitude of the biphoton wavefunction. Though we have used long bipho-

tons and low modulation frequencies, we believe that this technique should be extendable

to short biphotons. A commercially available telecommunication modulator driven at a fre-

quency of 60 GHz and therefore modulating at 120 GHz will allow measurement of biphotons

with a minimum length of about 8 picoseconds. This is about a factor of five faster than
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state-of-the-art commercial SPCMs. If the comparison is made on the basis of state-of-the-

art polymer light modulators operating at 200 GHz and therefore modulating at 400 GHz,

then the Fourier technique, will allow measurement down to about 2.5 ps. This is about

eight times faster than the fastest reported superconducting detector. Looking further to

the future, all-optical light modulators have been demonstrated at frequencies greater than

1 THz; thereby in principle allowing measurement of photons on femtosecond time scales.

We note that an advantage of the Fourier technique as compared to either sum frequency

correlation or Hong-Ou-Mandel interference is that the signal and idler photons may be cor-

related at distant detectors and do not need to be brought together at a summing crystal or

at a beam splitter.

For more details please see: Chinmay Belthangady, Shengwang Du, Chih-Sung Chuu, G.Y.

Yin, and S.E. Harris, “Modulation and measurement of time-energy entangled photons”,

Phys. Rev. A, Rapid Communications, 80, 031803 (September 2009).

7 Observation of Nonlocal Modulation with Entangled

Photons

The idea of what we term here as nonlocal modulation was published about two years ago;

i.e., S. E. Harris, “Nonlocal Modulation of Entangled Photons,” Phys. Rev. A 78, 021807(R)

(2008). This section of the report describes the first experimental observation of this effect.

When the photons of a time-energy entangled pair are sent through different channels

having arbitrary dispersions, the dispersion in one channel may be negated by dispersion of

the opposite sign in the other channel. This effect results from a quantum mechanical inter-

ference and has no classical analog. This is now termed as nonlocal dispersion compensation.

We report the first observation of a time-frequency analog to nonlocal dispersion cancella-

tion and term this effect as nonlocal modulation. Consider a simplified concept system as

24



shown in left portion of Fig. 15, where a monochromatic pump generates non-degenerate

time-energy entangled photon pairs. The signal and idler photons (Channels 1 and 2) pass

through sinusoidal phase modulators. These modulators are driven at the same modulation

frequency, and their relative phase may be varied. After passing through the modulators,

the signal and idler photons are dispersed, for example, by a prism, and the relative po-

sitions (frequencies) of the signal and idler photons are correlated. When the modulation

frequency is small as compared to the spectral bandwidth of the signal or idler, we find a

consequence of time-energy entanglement that we term as nonlocal modulation. Specifically,

these distant modulators act cumulatively to determine the apparent modulation depth. If

the two identical modulators have opposite phase, they negate each other and act as if nei-

ther modulator were present. Conversely, if operated with the same phase, they produce the

same correlation as does a single modulator with twice the modulation depth acting on only

one of the photons.

Figure 15: Nonlocal modulation. Signal and idler photons are phase modulated at the same
frequency and with controllable phase. The signal and idler beams are frequency-dispersed,
and the positions (frequencies) of the detected photons on the photodetectors are correlated.
Left: simplified concept diagram. Right: experimental configuration.

If the resolution of the frequency correlator of Fig. 15 (left) is infinite, the resulting

correlation traces for phased and anti-phased modulators may look something like Fig. 16.

Since the pump laser which generates the entangled photons is monochromatic, they are

delta-function correlated in frequency before any modulation occurs. The modulators act
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Figure 16: Example frequency correlation function with (a) phased and (b) anti-phased
sinusoidal modulators. Because the modulators have the same amplitude, cumulative mod-
ulation results in either (a) doubling of modulation depth or (b) cancellation of modulation
in the spectral correlation.

on this delta function correlation by generating sidebands whose distribution depends on

the amplitude of the sinusoidal driving signal. If the modulators are run in phase with

each other, the distribution of sidebands resembles that of a single modulator with twice

the driving amplitude [Fig. 16(a)]. If run with opposite phase, the modulators cancel each

other, and a single delta function is present in the correlation, as if neither modulator were

present [Fig. 16(b)].

The more detailed experimental configuration is shown in right part of Fig. 15. We

pump a 20 mm long, periodically-poled, magnesium oxide-doped stoichiometric lithium tan-

talate crystal (PPSLT) with 0.8 W from a 532 nm cw laser. The nonlinear crystal is phase

matched to produce 32 nm bandwidth, degenerate photon pairs at 1064 nm. All fields are

polarized along the extraordinary axis of the crystal. The generated photons are filtered

from the strong 532 nm pumping beam using a four-prism setup and are then coupled into

a polarization-maintaining fused-fiber beam splitter (AFW PFC-64-1-50-L-P-7-1-F) which

diverts the photons into Channels 1 and 2 with equal probability. The photons are passed

through identical sinusoidal phase modulators (EOSPACE) which are driven at 30 GHz with

modulation depths of about 1.5 radians. To set the modulation depth, we adjust the variable

attenuators in the microwave driver circuit and verify the depth by measuring the sideband
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amplitudes of a 1064 nm Nd:YAG reference laser. The relative phase between the modu-

lators is controlled using a calibrated phase trimmer. The microwave circuit schematic is

detailed in Fig. 17.

!

K    V

K    V

PM

PM
(a) (b)

(d)

(e)

(f) (g) (h)
(c)

Figure 17: Driver circuit for 30 GHz phase modulators: (a) Microwave Dynamics PLO-3072
30 GHz source, (b) Weinschel Associates 953K-3dB variable attenuator, (c) Picosecond Pulse
Labs 5350-218 power divider, (d) Weinschel Associates 953K-10dB variable attenuator, (e)
Atm Inc. P1409-360 phase trimmer, (f) Nextec-RF NA00435 amplifiers, (g) MegaPhase CA-
V1K2 K to V coaxial adapters, (h) EOSPACE PM-DV5-40-PFU-PFU-106-LV-UL custom
phase modulators.

The photons then pass through identical monochromators, each having a linear dispersion

of 210 GHz/mm and a Gaussian instrument response function with a FWHM of 8.5 GHz. The

monochromators each consist of a 1200 grooves/mm, aluminum-coated grating (Thorlabs

GR50-1210) operating at a deviation angle of about 8 degrees. Lenses with focal lengths

of -12.75 and 250 mm are used, in a telescope arrangement, to magnify the beam before

diffraction by the grating. A 750 mm lens focuses the diffracted beam through a 50 µm

slit. To obtain frequency domain correlation curves, we fix the output slit in Channel 1

at x1 and scan the position x2 in Channel 2. The photons that are transmitted through

the monochromator slits are coupled into multimode fibers and detected with time-resolved

single photon counting modules (SPCMs, id Quantique id400 and PerkinElmer SPCM-AQR-

16-FC). A photograph of the monochromators is shown in Fig. 18.

The primary experimental results of this work are shown in Fig. 19. For each case, we set

the monochromator slit in Channel 1 at an arbitrary position x1 that is near the center of

the generated 32 nm spectrum and leave the position of this slit fixed thereafter. The slit in

Channel 2 is scanned over positions x2, and the coincidence rate of the two detectors (with
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Figure 18: Photo of frequency correlation setup. Identical monochromators measure the
frequencies of the entangled photons. Red and blue lines show the beam path for Channel 1
and Channel 2, respectively.

gate width T = 1.25 ns) is recorded as a function of this position. For each position, the

rate is averaged for 20 s.

With the pump frequency defined as ωp, and the position x2 proportional to the frequency

ω2, we express the coincidence rate as a function of relative frequency ∆ ≡ ω2 − (ωp − ω1).

The scale of the frequency axis is calibrated by measuring the sideband spacing of a single-

mode 1064 nm laser modulated at 30 GHz, with the zero position chosen (at the start of the

experiment) as the location of the correlation peak for unmodulated photon pairs.

The upper portion of Fig. 19 shows the experimental results without modulation and

with modulation in a single channel. In Fig. 19(a) (upper), both modulators are turned

off by disconnecting their 30 GHz drive signals. As expected by energy conservation, a

single correlation peak is observed. In Fig. 19(b) (upper), Channel 1 is phase modulated

as exp[iδ sin(ωmt)] with a modulation depth of δ = 1.5, and Channel 2 is not modulated.

The frequency correlation is now distributed over a set of sidebands, having Bessel function

amplitudes J2
n(δ), whose total area is equal to that of upper (a) of Fig. 19.
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Figure 19: Frequency correlation measurements. The horizontal axes measure relative fre-
quency changes as slit position x2 is scanned. Upper: (a) both modulators turned off and
(b) the modulator in Channel 1 running at a modulation depth of 1.5. Lower: both modu-
lators running (a) with the same phase and (b) with opposite phase. The modulation depth
for both modulators is 1.5. Circles are data; curves are theoretical fits (see text).

In Fig. 19(a) (lower), both modulators are turned on at a modulation depth of δ = 1.5, and

the cable length is adjusted so that they have the same phase. They now act cumulatively

(constructively interfere) to produce a set of sidebands having a Bessel function distribution

J2
n(2δ). The frequency-domain correlation function of two distant modulators is therefore

the same as that which would be obtained by correlating an unmodulated photon with a

photon modulated at twice the modulation depth.

In Fig. 19(b) (lower), the modulators are run at the same depth as in the previous para-

graph, but now the relative cable length is adjusted so that the modulators are run in phase

opposition. The modulators now destructively interfere, and no sidebands are visible.

The striking difference between Figs. 16 and 19 is that the sidebands are not delta func-

tions but have widths determined by the resolution of the frequency correlator in Fig. 15

29



(right). We have developed a theory to predict the measured correlation functions with

finite-resolution monochromators as used in our experiment. The following describes this

theory, which is used to produce the solid curves in Fig. 19.

Working in the Heisenberg picture, a nonlinear crystal of length L is pumped by a

monochromatic laser at frequency ωp. A positive-frequency field operator a(ω, z), represent-

ing entangled photons, evolves inside the crystal and may be written in terms of an envelope

b(ω, z) which varies slowly along the propagation direction: a(ω, z) = b(ω, z) exp[ik(ω)z].

The propagation equations describing entangled photon generation are

∂b(ω, z)

∂z
= iκ(ω)b†(ωp − ω, z) exp [i∆k(ω)z],

∂b†(ω, z)

∂z
= −iκ∗(ω)b(ωp − ω, z) exp [−i∆k(ω)z]. (7.1)

where κ(ω) and ∆k(ω) are the coupling factor and wave-vector mismatch, respectively. The

solution for the output field at z = L, expressed in terms of the vacuum field avac(ω) at the

input of the crystal, is

aout(ω) = A(ω)avac(ω) + B(ω)a†
vac(ωp − ω), (7.2)

where, to preserve the commutation relations, the functions A(ω) and B(ω) satisfy |A(ω)|2−
|B(ω)|2 = 1 and A(ω)B(ωp − ω) = B(ω)A(ωp − ω).

The time-domain output field operator is related to its frequency-domain counterpart

[Eq. (7.2)] by the inverse Fourier transform, aout(t) =
∫ ∞
−∞ aout(ω) exp(−iωt)dω, and is nor-

malized so that the total rate of generated photons exiting the crystal is Rout = 〈a†
out(t)aout(t)〉.

The generated photons are separated into two channels, denoted as Channel 1 and Chan-

nel 2, using a 50/50 beam splitter. The field operators at the outputs of the beam splitter

are a1(t) = a2(t) = 1√
2
aout(t). The photons are modulated by periodic phase modula-

tors whose time-domain, Fourier-series transfer functions are m1(t) =
∑

k qk exp(−ikωmt) in

Channel 1 and m2(t) =
∑

l rl exp(−ilωmt) in Channel 2, with Fourier transforms m1(ω) =
∑

k qkδ(ω − kωm) and m2(ω) =
∑

l rlδ(ω − lωm), respectively. With the ∗ symbol denot-

ing convolution, the frequency-domain modulated fields are ã1(ω) = a1(ω) ∗ m1(ω) and
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ã2(ω) = a2(ω) ∗ m2(ω). Substituting a1(ω), a2(ω), m1(ω), and m2(ω) into the expressions

for ã1(ω) and ã2(ω) yields

ã1(ω) =
1√
2

∞
∑

k=−∞

qk

[

A(ω − kωm)avac(ω − kωm)

+ B(ω − kωm)a†
vac(ωp − ω + kωm)

]

,

ã2(ω) =
1√
2

∞
∑

l=−∞

rl

[

A(ω − lωm)avac(ω − lωm)

+ B(ω − lωm)a†
vac(ωp − ω + lωm)

]

.

(7.3)

The modulated photons are frequency correlated by passing each through identical monochro-

mators whose output slits may be translated to select frequencies ω1 = βx1 in Chan-

nel 1 and ω2 = βx2 in Channel 2, where the constant β is the linear dispersion of the

grating systems. The monochromators (spectral filters) have field transmission functions

H1(ω − βx1) and H2(ω − βx2). The filtered field operators in Channels 1 and 2 are

ã1f(ω, x1) = ã1(ω)H1(ω − βx1) and ã2f(ω, x2) = ã2(ω)H2(ω − βx2), respectively. The count

rates at the outputs of the monochromators are given by R1(x1) = 〈ã†
1f(t, x1)ã1f(t, x1)〉 and

R2(x2) = 〈ã†
2f(t, x2)ã2f(t, x2)〉. These rates are

R1(x1) =
1

4π

∞
∑

k=−∞

|qk|2
∫ ∞

0

|B(ω − kωm)|2 |H1(ω − βx1)|2dω,

R2(x2) =
1

4π

∞
∑

l=−∞

|rl|2
∫ ∞

0

|B(ω − lωm)|2 |H2(ω − βx2)|2dω. (7.4)

Assuming a gate width T , the coincidence rate for the two detectors is related to the

second-order Glauber correlation function G(2)(t1, x1, t2, x2) =

〈ã†
2f(t2, x2)ã

†
1f(t1, x1)ã1f(t1, x1)ã2f(t2, x2)〉. With the assumption that the resolution of the

monochromators is high, or equivalently that the filter widths are small (as compared to the

modulation frequency ωm), it can be shown that the correlation function depends only on

the difference of the arrival times τ = t2 − t1, and the coincidence rate is
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Rc(x1, x2) =

∫ T/2

−T/2

G(2)(τ, x1, x2)dτ. (7.5)

Equation (7.5) may be expanded using Wick’s theorem and shown to be given by

Rc(x1, x2) = R1(x1)R2(x2)T +

∫ ∞

−∞

∣

∣

∣

∣

∣

∞
∑

k=−∞

qkrn−kFk(τ, x1, x2)

∣

∣

∣

∣

∣

2

dτ, (7.6)

where ∆ = β(x1 + x2) − ωp, n = ⌊∆/ωm + 1
2
⌋, and

Fk(τ, x1, x2) =
1

4π

∫ ∞

0

A(ω − kωm)B(ωp − ω + kωm)

× H1(ω − βx1)H2(ωp − ω − βx2 + nωm) exp(iωτ)dω. (7.7)

The first term in Eq. (7.6) is the result of accidental coincidences between unpaired pho-

tons in a gate width T . The second term is the coincidence rate between paired photons

and captures the modulation effects described in this section. To obtain Eqs. (7.4)–(7.7), we

have assumed that the transmission widths of the monochromators are small as compared to

the modulation frequency and large as compared to the inverse of the temporal gate width

T . In our experiment these assumptions are satisfied by factors of 3.5 and 11, respectively.

If we further assume that A(ω) and B(ωp − ω) are constant in the vicinity (±150 GHz in

Fig. 19) of ω = βx1 and are equal to A0 and B0, respectively, then Eq. (7.6) becomes

Rc(∆) = R1R2T + cnH(2)(nωm − ∆), (7.8)

where H(2)(ω) = |H1(ω)|2 ∗ |H2(ω)|2, and

R1 =
1

4π
|B0|2

∫ ∞

−∞
|H1(ω)|2dω, (7.8a)

R2 =
1

4π
|B0|2

∫ ∞

−∞
|H2(ω)|2dω, (7.8b)

cn =
1

8π

∣

∣

∣

∣

∣

A0B0

∞
∑

k=−∞

qkrn−k

∣

∣

∣

∣

∣

2

. (7.8c)
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The solid curves in Fig. 19 are theoretical fits to the data using Eq. (7.8) shifted horizon-

tally so as to match center. The Fourier series coefficients for sinusoidal phase modulators

are Bessel functions with qk = Jk(−δ1) and rl = Jl(−δ2), where δ1 and δ2 are the modu-

lation depths in Channels 1 and 2, respectively (|δ1| = |δ2| = 1.5 in our experiment). We

model the monochromator response functions in Channels 1 and 2 as Gaussians with FWHM

bandwidths Γ: H1(ω) = α1 exp [−2 ln(2)ω2/Γ2] and H2(ω) = α2 exp [−2 ln(2)ω2/Γ2]. (The

monochromator in Channel 1 is the mirror image of the one in Channel 2 which has a mea-

sured FWHM bandwidth of 8.5 GHz.) The transfer functions include fitting parameters α1

and α2 used in Fig. 19 to account for transmission losses and the difference in detection

efficiencies of the photon counters.

To obtain the constants A0 and B0, for each case in Fig. 19, we measure the average

value of R2 and use Eq. (7.8b) to calculate |B0|. We obtain |A0| from the commutator-

preserving condition |A0|2 − |B0|2 = 1. For all curves, the fitting parameters are taken as

α2
1 = 1.20 × 10−2 and α2

2 = 5.59 × 10−4. These values are in good agreement with loss

measurements and estimates of the photon counter detection efficiency, where we note that

the id400 detector in Channel 1 has a detection efficiency an order of magnitude larger than

the SPCM-AQR-16-FC detector in Channel 2.

The experiment and theory summarized in this section pertain to sinusoidal phase mod-

ulation. We have also developed a general theory for nonlocal modulation, presented below.

For general modulation, the modulated signal and idler field operators are described by

convolution as before: ã1(ω) = a1(ω) ∗ m1(ω) and ã2(ω) = a2(ω) ∗ m2(ω); however, the

modulation functions m1(t) and m2(t) [with Fourier transforms m1(ω) and m2(ω)] are no

longer assumed to be periodic. The resulting Glauber correlation function becomes:

G(2)(t1, x1, t2, x2) = C(t1, x1, t2, x2) + Q(t1, x1, t2, x2), (7.9)

where the functions C(t1, x1, t2, x2) and Q(t1, x1, t2, x2) are

33



C(t1, x1, t2, x2) =
1

16π2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
m∗

1(Ω1)m1(Ω3)m
∗
2(Ω2)m2(Ω4)

×|B(ω1 − Ω1)|2|B(ω2 − Ω2)|2H∗
1 (ω1 − βx1)H1(ω1 − Ω1 + Ω3 − βx1)

×H∗
2 (ω2 − βx2)H2(ω2 − Ω2 + Ω4 − βx2)

× exp{i[(Ω2 − Ω4)t2 + (Ω1 − Ω3)t1]}dω1dω2dΩ1dΩ2dΩ3dΩ4,

Q(t1, x1, t2, x2) =
1

16π2

∣

∣

∣

∣

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
m1(Ω1)m2(Ω2)A(ω − Ω1)B(ωp − ω + Ω1)

×H1(ω − βx1)H2(ωp − ω + Ω1 + Ω2 − βx2)

× exp[i(ω − Ω1 − Ω2)(t2 − t1)] exp[−i(Ω1 + Ω2)t1]dωdΩ1dΩ2

∣

∣

∣

∣

2

. (7.10)

In order to observe nonlocal modulation interference, the modulating waveform must vary

slowly as compared to the temporal correlation width of the entangled photons (as described

by the paper by Harris in 2008). In Eqs. (7.10), the slow modulation condition may be

applied by taking A(ω) and B(ω) to be constants (representing a transform-limited, infinite-

bandwidth biphoton whose temporal correlation is a delta function). We also assume that

the frequency correlation measurement has infinite resolution: H1(ω) = H2(ω) = δ(ω). With

these assumptions, C(t1, x1, t2, x2) becomes a constant, independent of x1 and x2 (or, equiv-

alently, ∆); it is a classical background term arising from coincidences between uncorrelated

photons from different entangled pairs. Q(t1, x1, t2, x2) becomes

Q(t1, x1, t2, x2) ∝ |(m1 ∗ m2)(∆)|2

= |F{m1(t)m2(t)}|2, (7.11)

where (m1 ∗ m2)(ω) = m1(ω) ∗ m2(ω), and F{f(t)} = 1
2π

∫ ∞
−∞ f(t) exp(iωt)dt is the Fourier

transform. If m1(t) and m2(t) are phase modulation waveforms, i.e. m1(t) = exp[iΦ1(t)]

and m2(t) = exp[iΦ2(t)], then the modulators interfere so as to produce a frequency domain

correlation proportional to the square of the Fourier transform of exp{i[Φ1(t) + Φ2(t)]}. For

this relation to hold, it is required that Φ1(t) and Φ2(t) both vary slowly as compared to the

temporal width of the two-photon wavefunction.
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8 Hiding Single Photons with Spread Spectrum Tech-

nology

In this section we describe a proof-of-principal experiment demonstrating the use of spread

spectrum technology at the single photon level. We show how single photons with a pre-

scribed temporal waveform may be transmitted through a noisy environment that is created

by either narrow band thermal photons, or as in this work, an interfering laser beam that

has an average power that is about a thousand times larger than the average power of the

beam of single photons. We do this by using two synchronously driven electro-optic phase

modulators. As shown in Fig.20(a), the modulator at the transmitter, M1 broadens the

spectrum of the incident photon beam from about 1 MHz to about 10 GHz and thereby

reduces the spectral power density by a factor of 104. The receiver modulator, M2 is run in

anti-phase to the transmitter modulator so as to demodulate the photon beam and reduce

its bandwidth to the original 1 MHz, thereby allowing it to be transmitted through a narrow

bandpass filter, F2.

Now suppose that one wishes to transmit the single photon beam through an environment

of thermal photons that have a linewidth that is comparable to that of the original photon

beam. If this noise, or instead, a narrowband interfering laser beam is injected after the first

modulator [Fig.20(a)], it is spectrally broadened by the second modulator and only a fraction

of its power is transmitted through the narrow band filter at the receiver. As a result, the

signal-to-noise is increased approximately in the ratio of the modulation bandwidth to the

bandwidth of the final filter, and in the language of spread spectrum technology the system

experiences a “processing gain”. In this work we demonstrate a processing gain of a factor

of 50.

In this experiment we use narrowband time-energy entangled pairs of photons (biphotons)

produced as described earlier. We set the optical depth of the MOT at 30. With 2γ13 equal

to the spontaneous decay rate out of state |3〉, we set the coupling laser Rabi frequency

Ωc = 4.01γ13, the pump laser Rabi frequency Ωp = 1.66γ13 and the pump laser detuning,

∆ωp = 48.67γ13. Under these conditions the source produces narrowband biphotons with an

estimated linewidth of 3.5 MHz at a rate of about 11500 pairs/s.
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Figure 20: Schematic of paired photon generation and spread spectrum experiment. (a) The
spectrum of anti-Stokes photons produced in a magneto-optic trap is spread and narrowed
by phase modulators M1 and M2 driven by a pseudorandom bit sequence (PRBS) generator.
A weak narrowband laser is used to hide the photons. F1 and F2 are narrowband filters. A
50/50 beamsplitter (BS) is used to verify the presence of single photons. (b) Pseudorandom
phase modulation in the time domain. The labels 1, 0 refer to the outputs of the PRBS
generator. (c) Schematic of the optical spectrum after phase modulation by the PRBS
generator.

The detection of the Stokes photon by detector D1 sets the time origin for measurement

of the biphoton wavefunction at detector D2. The anti-Stokes photon is sent through a

20-GHz electro-optic phase modulator (Eospace Inc.) driven by one of two differential data

outputs of a pseudorandom bit sequence (PRBS) generator (Centellax TG2P1A) with a bit

rate tunable between 0.05-10 Gb/s. In each time slot ∆T , equal to the inverse bit rate, the

PRBS outputs a random voltage equal to Vπ/2 (corresponding to logic 1) or −Vπ/2 (logic

0), where Vπ is the half-wave voltage of the phase modulators. We choose a bit pattern

consisting of 32767 (215 − 1) random bits. At a bit rate of 10 Gb/s, the phase therefore

switches randomly [Fig.20 (b)] between −π/2 and π/2 radians every 0.1 ns. This process of

random phase modulation in the time domain spreads the spectrum in the frequency domain

from about 3.5 MHz for the unmodulated photon to about 10 GHz for the modulated photon.

The envelope of the spread spectrum is a sinc-squared function with the first null, as shown

in Fig.20 (c), at a frequency equal to the bit rate.
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The phase-modulated anti-Stokes photon is transmitted over a channel consisting of a

long single-mode optical fiber [Fig.20(a)]. At the receiver end, the photon is sent through a

second phase modulator, identical to the first and driven by the complementary output of

the PRBS generator. The two phase modulators are synchronized by adjusting the lengths

of the electric cables connecting them to the PRBS generator such that the relative time

delay, ∆tRF of the radio frequency signal sent to the two modulators equals the travel

time, ∆tp, of the anti-Stokes photon between the modulators. Fine adjustment of ∆tRF is

achieved by means of a radio frequency waveguide of variable length connected to one of

the two rf cables. When the phase modulators are run in synchronism such that the phase

imposed on the photon by the first modulator is exactly undone by the second modulator,

the spectral width of the photon is restored to its original value of 3.5 MHz. When the

phase modulators are not run in exact phase opposition, the uncompensated residual phase

results in a spectrum that is wider than 3.5 MHz. After passing through the second phase

modulator the anti-Stokes photon is sent through a 65-MHz fiber based Fabry-Perot filter

(Micron Optics) with a free spectral range of 13.6 GHz. If the spectral width of the photon

after the second phase modulator is less than the filter bandwidth, the photon passes through

with little loss of probability amplitude. Conversely, if the spectral width of the photon is

larger, then it is attenuated by the filter. The spectrum of narrowband noise entering the

channel after the first modulator is spread by the second modulator and is attenuated by the

filter. To hide the photon we use an attenuated beam from an external-cavity diode laser

with a linewidth of about 300 kHz set at the same frequency as the anti-Stokes photon. A

50/50 beamsplitter (BS) and a third detector D3 is placed after the filter to verify the single

photon nature of the experiment.

With both phase modulators and the (noise simulating) laser turned off, the shape of the

anti-Stokes photon wavepacket is shown in Fig. 21(a). This shape is measured by record-

ing coincidence counts between detectors D1 and D2, with the beamsplitter removed, as a

function of the difference in arrival times of the Stokes, ts, and anti-Stokes, tas, photons

at the two detectors. When the first phase modulator is switched on, the spectrum of this

photon is spread to about 10 GHz. If the second phase modulator is off, the anti-Stokes
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Figure 21: Shape of the anti-Stokes photon wavepacket measured by recording coincidence
counts between detectors D1 and D2 with the beamsplitter removed. (a) Anti-Stokes photon
wavepacket measured when modulators M1 and M2 are off. (b)Modulator M1 is on and
modulator M2 is off. (c) Both modulators are on and run synchronously. (d) Both modulators
are on with ∆tRF > ∆tp (see text).

photon is severely attenuated by the narrowband filter F2 and very little photon probability

amplitude leaks through to detector D2. This is shown in Fig.21 (b). When the second

phase modulator is switched on and driven so as to cancel the phase imposed by the first

modulator, the photon spectrum is narrowed and passes through filter F2 with little loss of

probability amplitude. This is shown in Fig.21(c). The small residual loss in photon prob-

ability amplitude probably arises from a slight mismatch between the two modulators and

their complementary driving signals. In Fig.21(d), the difference in lengths of the electric

cables connecting the PRBS to the two modulators is chosen such that ∆tRF is greater than

∆tp by about 40ps. As a result, the phase imposed on the photon by the first modulator is

not exactly negated by the second modulator. Now, after transmission through filter F2 we

observe a reduced, but not zero, coincidence count rate. A similar result is obtained when

∆tRF < ∆tp.

We next deliberately inject a weak diode laser beam to hide the the anti-Stokes photon.

With additional laser photons at a rate of 40000 s−1 and anti-Stokes signal photons at a rate
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Figure 22: Retrieval of the anti-Stokes photon from injected noise. (a) Anti-Stokes photon
wavepacket as hidden by an additional laser beam that is injected into the channel. Here,
both modulators are off. (b) Switching on both modulators and running them synchronously
recovers the anti-Stokes photon

of 30 s−1 [Fig. 22 (a)], anti-Stokes photons can no longer be seen. If the two modulators are

now turned on and run in synchronism, the spectrum of the anti-Stokes photon is spread

by the first modulator and compressed by the second modulator so that the photon passes

through the filter and arrives at the detector with very little attenuation. The spectrum of

the laser photons, on the other hand, is spread by the second phase modulator and attenuated

by the filter and very little of the laser power reaches the detector. When this is the case, the

shape of the anti-Stokes photon wavepacket can be recovered from the noise [Fig.22(b)]. The

decrease in the level of the flat uncorrelated background by a factor of about 50 corresponds

to the spread spectrum processing gain.

The quality of a single photon source can be quantified by means of the conditional

Glauber correlation function, g
(2)
cond(0) defined in Eq 5.2. We turn off the the weak narrowband

laser beam and measure g
(2)
cond(0) as a function of the rate of detected Stokes photons with

both modulators turned off (blue line in Fig. 23) and with both modulators turned on and

running synchronously (red line in Fig. 23). At a Stokes rate of approximately 1200s−1 we

obtain g
(2)
cond(0) = 0.22± 0.06 for the unmodulated photon and g

(2)
cond(0) = 0.14± 0.04 for the

phase modulated-demodulated photon. These values of g
(2)
cond(0) are less than the classical

limit of 1 (dashed line in Fig. 23) and reasonably less than the limiting value of 0.5; i.e., the

conditional Glauber correlation function for a two-photon Fock state.

We have shown how narrowband single photons may be phase modulated so as to increase

the width of their spectrum by several orders of magnitude while at the same time retaining
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the information that characterizes their waveform. By compensation with an anti-phased

modulator, the biphoton waveform may be reconstructed at a distant location. We have

also shown how spread spectrum technology may be used to hide a single photon in the

presence of laser photons of the same frequency and similar linewidth. Applications may

include an additional level of classical security for quantum key distribution, and someday,

multiplexing of single photon communication channels. This work may also be the first use

of spread spectrum techniques combined with single photon detection.
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B Construction and Operation of the 2-D MOT
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Figure 24: Magnetic field coil and field geometry for a two-dimensional magneto-optic trap
(2D MOT). (a) The coil used to produce the linearly varying magnetic field. (b) Magnetic
field in the x − y plane. (c) Magnetic field as a function of x coordinate for coil current of
62A. (d) Gradient of the magnetic field as a function of x coordinate. The field gradient at
the center of the trap is about 10 gauss/cm.

Trapping of neutral atoms in a MOT is accomplished by applying a magnetic field which

varies linearly with the spatial coordinate around the region where the atoms are to be

trapped. To trap the atoms in a cigar shaped MOT, we provide spatial confinement along

the two transverse directions only, with no magnetic field gradient along the longitudinal

axis. Instead of the anti-Helmholtz coils of a 3D MOT, we use an elongated coil as shown in

Fig.24(a). This coil provides a magnetic field gradient of about 10 gauss/cm (at a coil current

of 62 A) in the transverse direction and an almost negligible gradient along the longitudinal

z direction. The coil is shaped like a racetrack and is made with a square copper wire of 5

mm size with a hollow core. Water is circulated through this core to cool the coil and allow
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operation up to about 100A. The shape of the coil is chosen to reduce its inductance and to

therefore facilitate fast switch on and switch off of the coil current. Fig. 24(b) shows a field

plot of the magnetic field in the transverse plane. At the center of the trap, the magnetic field

is zero and away from this center it increases linearly as a function of the radial coordinate.

Fig. 24 (c) and (d) show the magnitude of the magnetic field and its gradient as a function

of the distance from the center of the trap.
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Figure 25: Optical layout of 2D MOT and biphoton generation experiment.

C Optical Layout

Fig. 25 shows the layout of the MOT beams and the EIT lasers. The trapping laser is

divided into four beams two of which counterpropagate along an axis perpendicular to the

axis of the MOT. The remaining two beams are sent long an axis set at 45 degrees to the
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MOT axis. The power distribution between the beams is set to optimize the shape of the

MOT and to ensure that the atom cloud expands isotropically when the magnetic field is

switched off. Of importance, there are no trapping beams and no magnetic field gradient

along the axis of the MOT. The repump laser beam is sent at right angles to the MOT

axis. The trapping and MOT beams are 2 cm in diameter. The pump laser beam has a

1/e2 diameter of 1.46 mm and is circularly polarized (σ−). The coupling laser beam has a

diameter of 1.63 mm and has the opposite polarization (σ+). The pump and coupling laser

axis forms an angle of 2◦ with the MOT axis. Stokes and anti-Stokes photons are collected

along the axis of the MOT. The Stokes and anti-Stokes fiber-to-fiber coupling efficiency is

70% and their 1/e2 diameter is 220 µm. Quarter-wave plates and polarization beam-splitters

are used to select particular polarizations of the Stokes and anti-Stokes photons and also

provide an additional level of filtering of the generated photons from the strong pump and

coupling beams. To measure the optical depth and EIT, a weak probe beam is sent through

the Stokes fiber and its transmission though the MOT as a function of the detuning from

line center is recorded using a photomultiplier tube (PMT).

D Lasers

The wavelengths of the lasers used in MOT preparation depends upon the choice of the

atoms used in the trap. Our 2D MOT, as originally designed, trapped 85Rb and some of

the early experiments were performed on this system. In order to implement an optical

pumping scheme, we later switched to a 87Rb MOT and some later experiments described

in this report have been done with 87Rb atoms. Rubidium was chosen because of the large

hyperfine splitting of the 5P1/2 and 5P3/2 levels. In alkali atoms of lower atomic weights, the

hyperfine splitting is of smaller magnitude. Another important factor that led to the choice

of Rubidium was the ready availability of commercial lasers at the Rubidium D1 and D2

transitions.

Our optical system consists of several lasers with output frequencies locked to various

Rubidium transitions. For laser cooling and trapping and for biphoton generation it is

of utmost importance that the frequencies of these lasers be controlled to a high degree of
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Figure 26: Locking mechanism of the MOT and EIT lasers. A reference laser (right) is first
locked to a Doppler free peak of 85Rb using a saturation spectroscopy set-up. Light from the
reference laser is mixed with a portion of the light coming from the science laser (left) on a
fast photodetector to generate a beat note. The beat note is stabilized using a phase-locked
loop to lock the science laser relative to the reference laser.

precision. In the experiment this is done by locking first, a reference laser to one of the peaks

of a Doppler free saturation spectroscopy spectrum. The other lasers are locked relative to

this reference laser by mixing a part of the output of these lasers with the reference laser

beam and then using phase-locked loops to stabilize the resulting beat notes.

A schematic of the locking scheme is shown in Fig. 26. A small portion of the light

coming from an external cavity diode laser, referred to henceforth as the reference laser, is

sent through an electro-optic phase modulator (Thorlabs EO-PM-NR-C1, half-wave voltage

Vπ ≈ 175V ) driven with a sinusoidal voltage with a frequency of 100 MHz and a peak-to-peak

amplitude of about 50V. As a result of this phase modulation, the instantaneous frequency

of the laser light varies sinusoidally as a function of time. This beam is then sent through a

room temperature Rubidium cell to a photodiode (PD1). To see the Doppler-free saturation

spectroscopy peaks, a portion of this phase modulated beam is reflected back into the cell

as shown in the figure. For lasers locked to the Rubidium D1 line (795nm), the reference

laser is locked to the crossover peak of the F = 3 → F ′ = 2 and F = 3 → F ′ = 3 transitions

of 85Rb. For the D2 line (780nm), the reference laser is locked to the crossover peak of the

F = 3 → F ′ = 2 and F = 3 → F ′ = 4 transitions of 85Rb. The lasers are locked to the

maxima of the crossover peaks using the technique of Pound, Drever and Hall.

After the reference laser has been locked, a portion of the light from the laser is mixed

with a part of the beam of the science laser as shown in Fig. 26. The photodiode PD2
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Figure 27: Lasers used to prepare MOT. The trapping laser cools and traps atoms. The
repump laser pumps atomic population to the upper ground state for laser cooling. (a) 87 Rb
energy level diagram for D2 line and laser positions. The trapping laser is red-detuned by 20
MHz from the cycling |2〉 → |3〉 transition. The repump laser keeps the F = 1 state empty.
(b)85 Rb energy level diagram for D2 line and laser positions for cooling and trapping.

outputs a beat note at a frequency equal to the difference between the frequencies of the

reference and science lasers. This beat note is then frequency stabilized to that of a local

oscillator using a phase-locked loop. The frequency of the local oscillator can be varied to

tune the science laser to the desired Rubidium transition.

The primary laser used for laser cooling is a Titanium Sapphire laser (Coherent MBR

110) pumped by a diode pumped ND-YAG laser (Coherent Verdi V10). This laser has a

peak output of about 650 mW and is red detuned by about 20 MHz from the |5S1/2F =

2〉 → |5P3/2, F
′ = 3〉 transition of 87Rb to trap atoms of this isotope. Due to the proximity

of the other levels of the 5P3/2 manifold, there is a finite probability of exciting the atoms

to the F ′ = 1 and F ′ = 2 levels. Atoms thus excited may, through spontaneous emission,

decay down to the |5S1/2, F = 1〉 level and are then no longer cooled by the trapping laser.

To return these atoms back to the|5S1/2, F = 2〉 state, a second laser, called the repump

laser tuned on resonance with the |5S1/2F = 1〉 → |5P3/2, F
′ = 2〉 transition is used. Fig. 27

shows the positions of the trapping laser and repump lasers used to trap 87Rb (a) and 85Rb
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Figure 28: Locking position of the pump laser used in biphoton generation for 87Rb (a) and
85Rb (b).

(b) atoms. A 780nm external cavity diode laser (ECLD) (Sacher Lasertechnik Littrow TEC

series) with a peak power of ≈ 200 mW is used as the repump laser. These lasers are locked

using the technique described earlier.

In Fig. 28 and Fig. 29, we show the locking positions of the lasers used for EIT mea-

surements and for biphoton generation. The pump laser (Sacher Lasertechnik Littman TEC

series) operates at 780nm and is blue-detuned 146 MHz from the 5S1/2F = 2 → 5P3/2F
′ = 3

transition of 85Rb or the 5S1/2F = 1 → 5P3/2F
′ = 2 transition of 87Rb as shown in Fig.

28. The coupling laser (New Focus Vortex diode laser) operating at 795nm is locked on

the D1 line as shown in Fig. 29. The probe laser beam is generated by sending a portion

of the coupling laser light through a double-pass acousto-optic modulator (AOM) operated

at a frequency of ≈ 1.57 GHz (for 85Rb) or ≈ 3.47 GHz for 87Rb. The probe frequency

can be swept by 40 MHz on either side of the transition to perform optical depth and EIT

measurements.
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Figure 29: Locking position of the coupling and probe lasers used in EIT measurements and
biphoton generation for 87Rb (a) and 85Rb (b).

E Vacuum System

The MOT is prepared in a ultra-high vacuum system consisting of an octagonal ceramic and

glass cell [Fig. 30 (a)] mounted on a six-way cross connected to a pumping station. The

pumping system consists of a roughing pump, a turbo pump and an ion pump. The vacuum

assembly is shown in Fig. 30(b). The turbo pump (Varian Turbo-V70) is used during initial

pump down and when baking the system. It is then switched off and the ion pump (Varian

VacIon Plus 40 StarCell) is used to obtain a vacuum of about 10−8 torr. Small leaks in

the interface between the windows and the alumina cell limit the vacuum to this value. In

the absence of such leaks, vacua of the order of 10−10 should be achievable. To one port of

the six-way cross an electrical feed-through is connected and four Rubidium dispensers are

spot welded between the terminals. When a current is sent through these terminals, the

dispensers are heated to a high temperature and release an isotopic mixture of 85Rb and

87Rb atoms into the vacuum system. Depending on the positions of the laser locks, either of

these atomic species can be trapped in the MOT.
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Figure 30: (a) Octagonal vacuum cell. The cell is machined from alumina and anti-reflection
coated windows are bonded onto its surfaces. (b) The vacuum assembly showing the oc-
tagonal cell and vacuum pumps. Rubidium dispensers are spot-welded to an electrical feed-
through connected to one flange of the six-way cross.

F Experimental Cycle

The lasers locked to the various Rubidium lines are switched on and off in a fixed sequence

during the biphoton generation experiment. The switching of the laser beams is done using

AOMs (ISOMET 1206C) operating at 110 MHz and with a transmission of ≈ 70-80% in

the first order diffracted beam. The AOMs are driven by home-built RF drivers and the

relative timing of the lasers is controlled by a series of timing boxes (Stanford Research

Systems DG535 Digital Pulse Generator) which have a resolution of 1 ps. The duration of

the experiment is divided into time slots of length equal to the inverse of what we call the

repetition rate. When the repetition rate is 200 Hz, for example, the experimental cycle

i.e. the length of this time slot is 5 ms. During this 5 ms cycle, the trapping and repump

lasers are kept on for about 4.5 ms to prepare the MOT. During the remaining 500 µs, the
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Figure 31: Timing sequence of laser and detector operation. The cooling lasers are switched
off during the experimental window. All times are in microseconds.

trapping and repump lasers are switched off and the pump and coupling lasers are switched

on for the biphoton generation experiment or the coupling and probe lasers are turned on

for EIT/OD measurements. For all the experiments described in this report, the MOT

magnetic field continued to remain on through the entire experimental cycle. A schematic

of the experimental cycle is shown in Fig.31. The cycle begins with the arrival of a trigger

signal at t = 0. The trapping and repump lasers are switched off 150 µs after the arrival

of the trigger pulse. A depump beam is then turned on for 150 µs to transfer the atomic

population from the upper 5S1/2 state to the lower 5S1/2 state. The coupling laser and pump

lasers are then switched on 0.5 µs and 10 µs respectively after the depump beam has been

turned off. The cloud of Rubidium atoms now starts emitting paired Stokes and anti-Stokes

photons. The single photon counting modules (SPCM) and the time-to-digital converter

(TDC) are then activated to record the coincidences between the photons as shown in the

figure. The photon counting equipment and the pump and coupling lasers are turned off
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Figure 32: The two-dimensional MOT atom cloud at left and the atom cloud imaged through
the vacuum cell on the right.

and the cooling lasers are turned back on 650 µs after the arrival of the trigger pulse and

continue to remain on till the end of the experimental cycle. In this manner, the MOT is

operated with a 10 percent duty cycle with the MOT-preparation time equal to 4.5 ms and

the experimental window for photon counting equal to about 500 µs. To measure the optical

depth and EIT curves, probe and coupling lasers are used during the experimental window.

Their timing is shown in the figure. The other lasers and the photon counting equipment

remain off during these measurements.

G MOT Characteristics

A picture of the 2D MOT is shown in Fig. 32. The cloud is about 1.7 cm in length and

has an aspect ratio of 25. The optical depth of the MOT increases as the current to the

Rubidium getters is increased. The maximum optical depth observed in our experiments

is 62. From the optical depth measurement, we estimate that there are approximately 108

atoms trapped in the MOT.

An optical depth measurement on the |5S1/2, F = 2〉 → |5P3/2, F
′ = 3〉 transition of

85Rb is shown in Fig. 33 (a). The blue trace is the transmission of the probe beam as a
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Figure 33: Optical depth and EIT measurements of the 2D MOT. (a) Transmission of the
probe beam as a function of detuning from line center with (red) and without (blue) the
coupling laser. (b) Optical depth as a function of the dispenser current.

function of detuning from line center (0 MHz) without the coupling laser. The optical depth

as estimated by a nonlinear curve fit to this data is 45. When coupling laser is switched on,

a narrow transparency window opens up at line center as shown by the red trace. The width

of the transparency window is about 1.2 MHz which is smaller than the natural linewidth

of Rubidium (5.9 MHz). We thus have subnatural EIT. In Fig. 33 (b) we show the optical

depth measured on this transition as a function of the current sent through the Rubidium

dispenser. To reduce the risk of exhausting the Rubidium dispensers, we always operate the

dispensers below 5A.
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Chapter 4

Theory of EIT based Paired

Photon Generation

Correlated and entangled photon pairs are widely used in quantum communication,

quantum cryptography [31] and quantum imaging [32, 33]. These photon pairs are

usually produced via spontaneous parametric down conversion in nonlinear crystals.

A few years ago a new approach to the generation of paired photons has been exper-

imentally demonstrated by two groups, both use electromagnetically induced trans-

parency (EIT) to generated paired photons in an otherwise opaque atomic medium.

Working with hot atoms, Lukin and colleagues have demonstrated correlation be-

tween generated pulses of light, as well as storage and delayed extraction [34]. Work-

ing with a MOT, Kimble and colleagues have shown the generation of nonclassical

photon pairs with a programmable delay [35]. Recently, the Harris research group at

Stanford has demonstrated generation and rudimentary waveform control of narrow

band biphotons [36]. More recently, Kolchin and colleagues have shown paired pho-

ton generation with a single pump beam in a right angle geometry and paired photon

generation in the ensemble of cold two-level atoms [37]. A long coherence length and

a controllable bandwidth of the generated paired photons are the advantages of the

new approach, which might be useful for such applications as long distance quantum
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communication [38] as well as biphoton waveform control and shaping 1.

4.1 Theory of paired photon generation

This chapter describes the theory of correlated paired photon generation in a collec-

tion of double Λ-type atoms [39]. Using the Heisenberg-Langevin method we evaluate

and analyze spectral characteristics of the generated Stokes and anti-Stokes photons

and their time-correlation properties. Of importance, we predict the regime when

the correlation time of generated photons is determined by the group delay caused

by EIT. This theoretical prediction as well as some theoretical aspects of this work

has been outlined in Ref. [36]. The complete theoretical treatment of paired photon

generation with and without the approximation, that the atomic population remains

in the ground state, has been given in Ref. [39].

Figure 4.1: Energy level diagram and schematic for spontaneous backward-wave
paired photon generation in an atomic cloud formed by double-Λ type atoms. In
the presence of the pump and coupling lasers phase-matched, counter-propagating
Stokes and anti-Stokes photons are generated into opposite directions.

The schematic of the process considered here is shown in Fig. 5.7. In the presence

two cw beams termed as the pump and coupling lasers with frequencies ωp and ωc,

1In a right-angle geometry, where Stokes and anti-Stokes photons are generated and collected
at right angles from the direction of the pump-coupling axis, applying the absorption mask on the
pump beam allows us to create a biphoton with a precribed waveform.
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paired spontaneous photons termed as Stokes and anti-Stokes are generated in the

atomic cloud and propagate in opposite directions along the z axis. In order to keep

the parametric gain small we choose the pump beam to be weak and detuned from the

resonance transition |1〉 → |4〉. The intense coupling beam is tuned to resonance with

the |2〉 → |3〉 transition to enhance the atom-field interaction and provide EIT for the

generated anti-Stokes photon. Under such conditions we expect a small fraction of the

atomic population to be in the excited states while most of it remains in the ground

state |1〉. The frequencies of the generated photons obey the energy conservation

ωs + ωas = ωp + ωc. In the presence of EIT the anti-Stokes photon escapes out of the

atomic cloud with very slow group velocity.

We note the connection to earlier work: Two-photon entanglement in type-II

SPDC has been analyzed [40]. The possibility of quantum correlated and squeezed

fields in backward wave EIT system has been predicted [41] and large parametric

gain and oscillations have been observed [42]. Control of single photons has been

discussed [43]. We also note the early studies on double-Λ atomic systems [44].

In this chapter we review and discuss in detail the system dynamics putting em-

phasis on the influence of the EIT window on paired photon generation bandwidth.

We show that at low parametric gain the atomic system can operate in two different

regimes. In the first regime, where the group delay is small, the intensity correlation

function shows Rabi oscillations. In the second regime, where the optical depth of the

atomic sample and the group delay are large, phase-matching becomes the dominant

process that controls the shape of the intensity correlation function. We examine

the conditions required for the system to operate in the oscillatory and group delay

regimes and discuss corresponding Stokes and anti-Stokes spectral generation rates.

In particularly, we predict that the group delay regime requires the optical depth

much higher that 10. This point has been missed in our earlier publication [36].

We also extend our theoretical treatment of paired photon generation to go beyond

the ground state approximation. This allows us to properly include and analyze the

effect of Langevin noise fluctuation on the atomic system and solve the problem of its

return to the ground state after the emission of Stokes and anti-Stokes photon pairs.

We also address the important questions: 1) “What are the effects of the optical
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thickness of the atomic sample on paired and single photon generation?” 2) “Does

every Stokes photon have its paired anti-Stokes photon?”

We introduce and derive the biphoton wavefunction taking into account Langevin

noise terms. We also derive and discuss the relation of the Stokes photon count rate

to the classical gain coefficient in the Stokes channel.

4.2 Heisenberg-Langevin description of paired pho-

ton generation

We consider a collection of identical double Λ-type atoms uniformly distributed within

a pencil-shaped volume with cross section S and length L. We assume that the atomic

sample is optically thin in the transverse direction, so that there is no radiation

trapping effect in this direction. No restrictions are imposed on the optical thickness

of the atomic sample in the z direction. We also assume that the pump and the

coupling beams counter-propagate undepleted through the atomic medium. Under

these assumptions we consider propagation of a single transverse spatial mode of

radiation along the z axis. The pump and coupling laser beams are treated as classical

quantities and their interaction with the medium is described semi-classically. In order

to allow for the spontaneous initiation of the parametric fluorescence process, the

generated weak Stokes and anti-Stokes fields are described by quantum-mechanical

operators, in slowly varying envelope approximation:

Ê
(+)
j =

√
~ωj

2ε0V
âj(z, t) exp

(
−iωjt + i~kj · ~z

)
, (4.1)

where subscript j denotes either Stokes or anti-Stokes photon, ωs = ω4 − ω2 + ∆ω14,

ωas = ω3 − ω1, V = L× S is the interaction volume.

Adopting the notations of Lukin and Fleischhauer [45, 46], in the rotating wave
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approximation we write the interaction Hamiltonian in continuous form as

V̂ = −~N
L

L∫

0

dz

(
∆ω14σ̃44(z, t) + g31âas(z, t)σ̃31(z, t)

+
Ωc

2
σ̃32(z, t) +

Ωp

2
σ̃41(z, t) + g42âs(z, t)σ̃42(z, t) + h.c.

)
, (4.2)

where σ̃jk(z, t) are the collective slowly varying atomic operators, defined in the Ap-

pendix 4.7.1, N is the total number of atoms in the atomic ensemble, ∆ω14 is the

detuning of the pump laser from the |1〉 → |4〉 transition, Ωc = 2℘23Ec

~ , Ωp = 2℘41Ep

~
are pump and coupling laser Rabi frequencies with Ep, Ec as the complex amplitudes

of the electric fields, gs = ℘42Es

~ and gas = ℘31Eas

~ are the coupling constants with ℘jk

as the dipole moment for the |j〉 → |k〉 transition and Ej =
√

~ωj

2ε0V
as the electric field

of a single photon.

The propagation of the Stokes and anti-Stokes fields and their interaction with

the atoms are described by the set of Maxwell and Heisenberg-Langevin equations.

The Heisenberg-Langevin equations are responsible for the atomic evolution:

∂

∂t
σ̃jk =

i

~
[V̂ , σ̃jk]− γjkσ̃jk + rA

jk + F̃jk, (4.3)

where γjk are the dephasing rates, rA
jk are the spontaneous emission rates, F̃jk(z, t)

are the collective atomic δ-correlated Langevin noise operators. The full set of the

Heisenberg-Langevin equations is shown explicitly in Sec. 4.7.2

The fluctuations of δ-correlated collective Langevin noise operators F̃jk(z, t) is

given by

〈F̃jk(z, t)F̃j′k′(z
′, t′)〉 =

L

N
Djk,j′k′(z, t)δ(t− t′)δ(z − z′), (4.4)

where Djk,j′k′ is a Langevin diffusion coefficient. The derivation of Eq.(4.4) and

relevant diffusion coefficients is shown in Sec. 4.7.4.
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The evolution of the annihilation as and creation a†as operators for the slowly vary-

ing Stokes and anti-Stokes fields is described by the coupled propagation equations

(
∂

∂t
+ c

∂

∂z

)
âs(z, t) = igsNσ̃24(z, t)

(
∂

∂t
− c

∂

∂z

)
â†as(z, t) = −igasNσ̃31(z, t).

(4.5)

The following analysis of the system involves calculation of the expected values

of quantum field operators and their combinations. We note that in the Heisenberg

picture operators evolve and the system is always in its initial state, which in our case

corresponds to no Stokes and anti-Stokes input beams at the left and right boundaries.

4.3 Solution of Coupled Equations

Due to complexity and nonlinearity it is not possible to obtain an analytic solution

for the combined set of the field propagation equations and Heisenberg-Langevin

equations. Nevertheless, under the condition that Stokes and anti-Stokes fields are

much weaker than the coupling and pump fields, and Stokes and anti-Stokes photon

densities are much smaller than the atomic density N/V [45], the Heisenberg-Langevin

equations can be linearized with Stokes âs and anti-Stokes âas fields as perturbation

parameters. The linearization procedure is described in detail in the Appendix 4.7.3.

In order to solve the set of the linearized Heisenberg-Langevin Eq. (4.35) and

coupled propagation Eq. (4.5), we first Fourier transform them. Then, extracting the

solutions for σ̃24(ω), σ̃31(ω) and substituting them into Fourier transformed Eq.(4.5),

we obtain the coupled equations for âs(z, ω) and â†as(z,−ω) in the form

∂âs

∂z
+ gRâs + κsâ

†
as =

∑
αi

ξs
αi

f̃αi

∂â†as

∂z
+ Γasâ

†
as + κasâs =

∑
αi

ξas
αi

f̃αi

(4.6)
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where gR(ω), Γas(ω) are the Raman gain, EIT profile coefficients respectively, κs(ω)

and κas(ω) are Stokes and anti-Stokes mode coupling coefficients. In Eq. 4.6 f̃αi
(z, ω)

are the renormalized Langevin noise operators: f̃αi
(z, ω) =

√
N/c × F̃αi

(z, ω). The

sum is taken over the relevant Langevin noise operators {f̃21, f̃24, f̃31, f̃34}.
The general solution of Eq. (4.6) can be written as

(
âs(L)

â†as(L)

)
= e−M̃L

(
âs(0)

â†as(0)

)
+

∑
αi

L∫

0

dz eM̃(z−L)

(
ξs
αi

ξas
αi

)
f̃αi

(4.7)

where M̃ =
(

gR κs

κas Γ

)

For the following derivation, let us define the coefficients of matrix e−M̃L as

(
A1 B1

C1 D1

)
= e−M̃L (4.8)

Due to the linearity of Eq. (4.7), the unknown variables a†s(L) and aas(0) of the

backward wave problem can be written as a linear combination of the initial boundary

values and the noise terms:

(
âs(L)

â†as(0)

)
=

(
A B

C D

) (
âs(0)

â†as(L)

)
+

∑
αi

L∫

0

dz

(
Pαi

Qαi

)
f̃αi

(4.9)

where

(
A B

C D

)
=

(
A1 − B1C1

D1

B1

D1

−C1

D1

1
D1

)
(4.10)

(
Pαi

Qαi

)
=

(
1 −B1

D1

0 − 1
D1

)
eM̃(z−L)

(
ξs
αi

ξas
αi

)
. (4.11)

The coefficients A,B,C and D are the functions of ω, whereas Pαi
, Qαi

are the

functions of ω and z.



CHAPTER 4. THEORY OF EIT BASED PAIRED PHOTON GENERATION 36

4.4 Characteristics of generated photons

4.4.1 Stokes and Anti-Stokes photon generation rates

We evaluate the output generation rates of Stokes and anti-Stokes photons into a

single transverse mode, for example, into a pair of mode-matched optical fibers. The

generation rates at the corresponding boundaries zj are

Rj =
c

L
〈â†j(zj, t)âj(zj, t)〉, (4.12)

where subscript j denotes either Stokes or anti-Stokes photon, zs = L and zas = 0.

Of importance are the spectral properties of the generated photons. The power

spectrum of the output Stokes and anti-Stokes fields are related to their first order

coherence functions G
(1)
j (τ) = 〈a†j(zj, t)aj(zj, t + τ)〉 as

Rj(ω) =
c

L

+∞∫

−∞

dτ eiωτG
(1)
j (τ) (4.13)

We use the solutions for as(L, ω) and a†as(0,−ω) field operators, given by Eq. (4.9),

the commutation relations for the input field operators [aj(zj, ω), a†j(zj,−ω′)] = L/(2πc)δ(ω+

ω′) and Eq. (4.41). We apply inverse Fourier transformation a(t) =
∫

dωe−iωta(ω)

and a†(t) =
∫

dωe−iωta†(−ω) and obtain the Stokes and anti-Stokes generation rates

from Eq. (4.12) in the form

Rs =

∫
dω

2π

(
|B|2 +

∑
αi,αj

L∫

0

dz P ∗
αi
Dα†i ,αj

Pαj

)
(4.14)

Ras =

∫
dω

2π

(
|C|2 +

∑
αi,αj

L∫

0

dzQαi
Dαi,α

†
j
Q∗

αj

)
(4.15)

The integrands of Eq. (4.14) and Eq. (4.15) are Stokes and anti-Stokes spectral

generation rates respectively.

As seen from Eq. (4.14) and Eq. (4.15), Stokes and anti-Stokes spectral generation
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rates consist of parametric counts, characterized by the transfer functions C(ω) and

B(ω), and of noise counts, that originate from Langevin noise fluctuations. If the

pump is weak and far detuned, B(ω) = −C(ω), and therefore the parametric terms

in Stokes and anti-Stokes rates are equal. We also note that the contribution of

Langevin noise fluctuations to spectral generation rates can not be neglected and

becomes dominant at low optical depth of the atomic sample.

Using the commutator conservation relation for the Stokes field at the right bound-

ary z = L, obtained from Eq. (4.9), the Stokes spectral generation rate can be ex-

pressed as

Rs(ω) = |A|2 − 1 +
∑
αi,αj

L∫

0

dzPαi
Dαi,α

†
j
P ∗

αj
(4.16)

When the pump is far detuned from the atomic transition and Stokes photon losses

are small, the contribution of Langevin noise fluctuation in Eq. (4.16) is negligible.

Thus, the Stokes spectral generation rate can be written as

Rs(ω) ≈ |A|2 − 1 (4.17)

Eq. (4.17) can be interpreted in terms of the quantum theory of linear amplifica-

tion [47]: in the absence of the Stokes input beam and losses for the Stokes photon, the

Stokes generation rate is just the additive noise caused by the amplification process,

that is characterized by the gain coefficient A(ω).

4.4.2 Two-photon intensity correlation function and bipho-

ton wave-function

In order to address another important issue - the time correlation properties of the

generated photons, we calculate the Glauber two-photon correlation function of time

delay τ between Stokes and anti-Stokes photons:

G
(2)
s−as(τ) = 〈â†s(L, t)â†as(0, t + τ)âas(0, t + τ)âs(L, t)〉 (4.18)
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Using the Stokes and anti-Stokes operators at the boundaries derived earlier

[Eq. (4.9)] and the commutator relations for the input fields, we obtain the inten-

sity correlation function as

G
(2)
s−as(τ) = ∫∫∫∫

dω1dω2dω3dω4e
−iω1t−iω2(t+τ)−iω3(t+τ)−iω4t

× 〈
â†s(L,−ω1)â

†
as(0,−ω2)âas(0, ω3)âs(L, ω4)

〉
(4.19)

The intensity correlation function contains the fourth-order Langevin noise cor-

relations. According to Gaussian moment theorem [48, 49] they can be decomposed

preserving the order into the sum of the products of second order Langevin noise

correlations. As a result the intensity correlation function can be simplified to

G
(2)
s−as(τ) = 〈a†as(0, t + τ)aas(0, t + τ)〉〈a†s(L, t)as(L, t)〉+ |〈aas(0, t + τ)as(L, t)〉|2

= G(1)
s (0)×G(1)

as (0) + |Φs−as(τ)|2 (4.20)

The first term in Eq. (4.20) represents flat uncorrelated background, the second

term, expressed through Φs−as(τ) function, describes the correlation part. Φs−as(τ)

is equal to

Φs−as(τ) = 〈âas(0, t + τ)âs(L, t)〉 (4.21)

=
L

2πc

∫
dω eiωτ

(
BD∗ +

∑
αi,αj

L∫

0

dzQ∗
αi
Dα†i ,αj

Pαj

)

We note that e−iωst−iωas(t+τ)Φs−as(τ) represents a two photon wavefunction or a

biphoton wavefunction on the condition that peak value of normalized g
(2)
s−as >> 1,

where g
(2)
s−as(τ) = G

(2)
s−as(τ)/(G

(1)
s (0)×G

(1)
as (0)).

Similarly, we can define Φas−s(τ) = 〈âs(L, t)âas(0, t + τ)〉. This function can be
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obtained in the form

Φas−s(τ) = (4.22)

L

2πc

∫
dω eiωτ

(
AC∗ +

∑
αi,αj

L∫

0

dzPαi
Dαi,α

†
j
Q∗

αj

)

For a wide range of input parameters we numerically verify that Φas−s(τ) =

Φs−as(τ).

For the case where Ωp/∆ω14 << 1 and ∆ω14/γ14 >> 1, we numerically verify that

the contribution of Langevin noise fluctuations to Φas−s(τ) is negligible, therefore

Eq. (4.22) can be simplified to

Φas−s(τ) =
L

2πc

∫
dω eiωτAC∗ (4.23)

4.5 Ideal Spontaneous Parametric Down Converter

Before we proceed to the discussion of the interesting cases of the atomic correlation

functions and photon spectral densities, we want to make an analogy to the well-

known parametric down converter in crystals [40]. We consider the ideal model -

non-degenerate parametric down converter in which a generated signal photon has a

very slow group velocity Vg as compared to an idler photon. We assume that both idler

and signal photon escape SPDC without losses, therefore the Langevin noise terms in

Eq. (4.6) can be neglected. In crystals the coupling coefficient can be approximated as

a constant over the broad spectral range κs(ω) = κas(ω) = κ. We also neglect Raman

gain gR(ω) and approximate EIT profile as Γ(ω) = −iω/Vg. Under these assumptions

the signal and idler photons have identical spectral characteristics and rates. Using

the Eq. (4.14), we obtain the photon spectral density R(ω) and spectrally integrated

generation rate R = 1/(2π)
∫

dωR(ω) in the form:
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R(ω) = |κ|2L2sinc2

(
ωL

2Vg

)

R = Vg|κ|2L.

(4.24)

As seen from Eq. (4.24), the spectral bandwidth of the SPDC in crystals is limited

by ∆ω ∼ 2πVg/L due to the phase mismatch of the off-centered counts resulting from

the group delay in the signal channel. In principle, the bandwidth can be made

very small by making the group delay τg = L/Vg large. For the atomic system κ is

proportional to the atomic density N = N/V , therefore the spectral density of the

generated photons scales as (NL)2. Taking into account that the EIT induced group

velocity of a wave is Vg = Ω2
c/(2γ13Nσ13), where σ13 = ℘2

13ω13/(cε0~γ13) is the atomic

cross section of the |1〉 → |3〉 transition, the total count rate scales linearly with NL.

Figure 4.2: Normalized signal-idler intensity correlation function for the ideal SPDC
with the condition of a large group delay L/Vg for a signal photon. R is the paired
photon generation rate.

Fig. 4.2 shows the normalized signal idler intensity correlation function. Since

the probability of emitting a photon pair is uniformly distributed along the crystal

of length L and the signal photon has a group delay relative to the idler, the g
(2)
s−i(τ)
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is expected to be the shifted rectangle with the width equal to the group delay τg =

L/Vg. By varying the group delay we can control the width of the waveform. The

peak height of g
(2)
s−i is equal to 1/(κL)2 and can be interpreted as a duty ratio: g

(2)
s−i =

1/(Rτg). In the regime of very small parametric gain κL << 1, which can be achieved,

for example, by lowering the intensity of the pump, the atomic system can produce

highly correlated photon pairs g
(2)
s−i >> 1.

4.6 EIT based Paired Photon Generator

Now we turn from the discussion of the ideal SPDC to the discussion of the EIT

based paired photon generator. In the EIT based generator, coupling between Stokes

and anti-Stokes modes is bandwidth limited. Moreover, the generated Stokes photon

undergoes Raman gain gR(ω), whereas a paired anti-Stokes photon propagates slowly

and undergoes absorbtion at the poles of EIT profile ω = ±Ωc/2.

We first obtain the coefficients of Eq. (4.6) with the assumption that the pump is

weak and far detuned from the |1〉 → |4〉 transition and ∆k = (~kp+~kc−~ks−~kas)·ẑ = 0:
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Γas =
2iNσγ13(ω + iγ12)

G(ω)
, (4.25a)

gR =

(
Ωp

2

2∆ω2
14

)
iNσγ13(ω + iγ13)

G(ω)
, (4.25b)

κs = κas = −
(

Ωp

2∆ω14

)
iNσγ13 Ωc

G(ω)
, (4.25c)

ξs
21 = −

(
Ωp

∆ω14

) √
2(ω + iγ13)

√
Nσγ13

G(ω)
, (4.25d)

ξs
24 = −

√
Nσγ13√
2∆ω14

, (4.25e)

ξs
31 = −

(
Ωp

∆ω14

)
Ωc

√
Nσγ13√

2G(ω)
, (4.25f)

ξs
34 = −Ωc

√
Nσγ13

2
√

2∆ω14
2

, (4.25g)

ξas
21 =

√
2Ωc

√
Nσγ13

G(ω)
, (4.25h)

ξas
24 = −

(
Ωp

∆ω14

)
Ωc

√
Nσγ13√

2G(ω)
, (4.25i)

ξas
31 =

2
√

2(ω + iγ12)
√
Nσγ13

G(ω)
, (4.25j)

ξas
34 = −

(
Ωp

∆ω14

) √
2(ω + iγ12)

√
Nσγ13

G(ω)
, (4.25k)

where N is an atom density, G(ω) = |Ωc|2− 4(ω + iγ12)(ω + iγ13), σ is the absorption

cross section for all allowed transitions: σ = σ14 = σ24 = σ23 = σ13.



CHAPTER 4. THEORY OF EIT BASED PAIRED PHOTON GENERATION 43

4.6.1 Ground state approximation

The approximation that the atomic population remains in the ground state σ̃11 = 1

gives two significant diffusion coefficients D12,21 = 2γ12 and D13,31 = Γ3 correspond-

ing to F21, F31 Langevin noise operators. Due to small atomic population in the

excited states, the rest of the diffusion coefficients are approximated as zeros and the

corresponding Langevin noise operators are neglected [36].

We numerically examine the emission rates and intensity correlation function for

the EIT based paired photon emitter. We take other parameters similar to those

of a Rb MOT: atom density N = 1011 atoms per cm3, atomic cross sections σ =

σ13 = σ14 = σ24 = 10−9 cm2 and dephasing rates equal to one half of the Einstein A

coefficient, i.e., γ13 = γ14 = γ24 = γ23 = 1.79 × 107 radians. We choose the strength

and the detuning of the pump laser from the |1〉 → |4〉 transition as ∆ω14 = 24γ13

and Ωp/∆ω14 = 0.1.

Figure 4.3: Transmission and phase mismatch as functions of detuning ω

Fig. 4.3 shows the EIT transmission profile and phase mismatch as a function of

the detuning of the anti-Stokes frequency ω. We take Ωc = 6γ13, NσL = 11 and

γ12 = 0. Fig. 4.4 shows the profiles of the coupling coefficient |κ(ω)| and the Raman
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Figure 4.4: Coupling constant and Raman gain as functions of detuning ω.

gain coefficient Re(gR(ω)) for the same parameters as in Fig. 4.3.

EIT based spontaneous emitters allow a variable emission bandwidth. The band-

width and profile of the spontaneous emission rates are controlled by the strength of

the coupling laser Ωc and the optical depth of the atomic sample NσL. By reducing

the strength of the coupling laser, the emission linewidth can be made much smaller

than the natural linewidth, with the minimum width ultimately limited by the de-

phasing rate γ12 of the |1〉 → |2〉 transition. At small optical depth NσL < 1, the

Raman gain coefficient gR(ω) and the coupling coefficients κs(ω), κas(ω) determine

the emission spectrum. At high optical depth NσL > 1, the EIT transmission win-

dow and the phase mismatch, introduced by a large group delay in the anti-Stokes

channel, affect the spontaneous emission spectrum.

In Fig. 4.5, Fig. 4.6 and Fig. 4.7 we show the variations of the coincidence count

rate Rc(τ) in a 1 ns bin and the corresponding Stokes power spectral density depend-

ing on the optical depth. With a bin size ∆T = 1 ns much smaller than the correlation

time, the coincidence count rate is obtained from the intensity correlation function

as Rc(τ) = ∆T (c/L)2G
(2)
as−s(τ). Compared to the ideal case, described earlier, the

intensity correlation function and the emission spectrum for the EIT based atomic

SPDC show some interesting features. The shape of the intensity correlation function
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Figure 4.5: The oscillatory regime: (a) Coincidence count rate in a 1 ns bin and (b)
Stokes spectral generation rate. NσL = 0.3, Ωc = 6γ13 and γ12 = 0.

Figure 4.6: The group delay regime: (a) Coincidence count rate in a 1 ns bin and (b)
Stokes spectral generation rate. NσL = 20, Ωc = 6γ13 and γ12 = 0.
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Figure 4.7: The group delay regime: (a) Coincidence count rate in a 1 ns bin and (b)
Stokes spectral generation rate. NσL = 200, Ωc = 6γ13, Ωp = 0.3γ13 and γ12 = 0.

Figure 4.8: Intensity correlation function with the correlation time smaller than the
spontaneous decay time, τr < τg < 1/(2γ13). NσL = 200, Ωc = 65γ13, γ12 = 0 and
1/(2γ13) = 25 ns.
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and the emission profile depend on the relation of three characteristic times. The first

is the inverse Rabi frequency of the coupling laser τr = 2π/
√

Ω2
c − γ2

13, the second is

the group delay between Stokes and anti-Stokes photons τg = L/Vg = 2γ13NσL/Ω2
c

and the third is a minimal pulse length required to pass through EIT medium [50]

τp(min) = 8 ln(2)γ13

√NσL/Ω2
c .

When the EIT effect is small, which occurs, for example, at low optical depth, the

atomic system behaves like a single atom [51]. In such a regime the intensity corre-

lation function reveals the damped Rabi oscillations (Fig. 4.5). The oscillations ob-

served in the intensity correlation function have the time period of τr = 2π/
√

Ω2
c − γ2

13

and occur on the condition that τr > τg, τp(min) and the coupling laser is strong enough

to force the oscillations to overcome damping Ωc > γ13. Once the metastable state |2〉
is excited by the Raman process |1〉 → |4〉 → |2〉, the probability amplitude between

|2〉 and |3〉 oscillates due to the strong interaction of the atoms with the resonant

coupling beam.

In Fig. 4.6 we show the intensity correlation function and Stokes emission spectrum

in the group delay regime, where τg > τr and τg > τp(min). In this regime the width

of the intensity correlation function is approximated by τg. Moreover, the frequency

range over which the spontaneous generation occurs is filtered by the EIT window

and mostly controlled by the phase-matching in the presence of large group delay

in the anti-Stokes channel. A sufficiently wide EIT window τg > τp(min) requires

high optical depth NσL > 10. In the presence of the non-zero dephasing γ12, the

maximum group delay and therefore the maximum width of the correlation function

is limited by ∼ 1/γ12.

By increasing the optical depth of the atomic sample, the EIT window can be made

substantially larger than the emission bandwidth. A large EIT window might be very

useful for such applications as bi-photon waveform control and shaping. Fig. 4.7

shows the intensity correlation function and the Stokes emission spectrum under such

a condition, where NσL = 200. The tail of the correlation function decays on the

time scale of τp(min).

We also note that at high optical depth it becomes possible to achieve the Stokes–

anti-Stokes correlation function with the width shorter than the spontaneous decay
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time 1/(2γ13). Fig. 4.8 shows such a correlation function that is obtained for NσL =

200 and Ωc = 65γ13, where τr < τg < 1/(2γ13).

We turn next to the sharp peak at the leading edge of the correlation function of

Fig. 4.7. This sharp peak is Sommerfeld-Brillouin precursor [52]. It has been observed

in our theoretical plots for a long time. But only recently, when it was experimentally

measured, we got interested in its nature. We thank Daniel J. Gauthier who suggested

that this peak is the result of simultaneously generated Stokes and anti-Stokes photons

that travel at nearly the speed of light in vacuum and arrive near-simultaneously at

the photodetectors. He also pointed out to the similarity of this peak to precursors

which have been extensively studied [52, 53, 54]. A precursor has an approximate

width that is equal to the opacity width of the atomic transition in the optically thick

medium. Similar to precursors, the sharp leading edge peak has a opacity width of

the EIT profile [55].

4.6.2 No ground state approximation

If the pump is weak and far detuned and therefore most of the atomic population is

in the ground state, we verify that the ground state approximation gives a correct

prediction for the Bi-photon function and the Stokes generation rate. Nevertheless

it does not properly account for an atom return to the ground state |1〉. Ideally one

would expect the Stokes and anti-Stokes rates to be equal, since an atom, making a

complete cycle on the energy level diagram (Fig. 5.7), returns to the ground state.

Even at zero dephasing rate γ12 = 0 of the |1〉 → |2〉 transition, the ground state

approximation predicts the anti-Stokes generation rate to be smaller than the Stokes

generation rate. For example, Ras/Rs = 0.65 for NσL = 10, Ωp/∆ω14 = 0.1 and

Ωc = 6γ13.

In order to treat properly an atom’s return to the ground state we will retain in

Eq. (4.6) all four Langevin noise operators {f̃21, f̃24, f̃31, f̃34} and take into account

small incoherent population in excited states, resulting from the steady state solutions

of Eqs. (4.27a)-(4.27f). With these inclusions the solution of Eq. (4.6) predicts the

Stokes and anti-Stokes spectral generation rates to be equal at a zero dephasing rate
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γ12 = 0 [Fig. 4.9(a)]. A non-zero dephasing rate γ12 6= 0 reduces EIT and therefore

introduces additional losses for anti-Stokes photons. As a result the output Stokes

rate exceeds the anti-Stokes rate. For example, for NσL = 10, Ωp/∆ω14 = 0.1,

Ωc = 6γ13 and γ12 = 0.6γ13 we obtain Ras/Rs ≈ 0.8. The corresponding Stokes and

anti-Stokes spectral generation rates are shown in Fig. 4.9(b). We believe that the

“missing” anti-Stokes photons are absorbed and are then reemitted in a solid angle

of 4π. The atomic sample is assumed to be optically thin in the radial direction.

Figure 4.9: Stokes (solid curve) and anti-Stokes (dash curve) spectral generation rates
at (a) zero dephasing γ12 = 0 and (b) non zero dephasing γ12 = 0.6γ13. NσL = 10,
Ωc = 6γ13 Ωp = 2.4γ13, ∆ω14 = 24γ13

Compared to the ideal SPDC, where each generated signal photon has its paired

idler photon, the real atomic system has uncorrelated noise counts in both Stokes

and anti-Stokes channels that result from Langevin noise fluctuations. In Fig. 4.10

we examine the dependence of the Stokes (anti-Stokes) and paired count rates on

the optical depth NσL. The parameters for the curves are γ12 = 0, Ωc = 5γ13,

∆ω14 = 24γ13 and Ωp/∆ω14 = 0.1. The paired count rate (Rp) is defined as the area

under the Stokes–anti-Stokes coincidence count rate function minus the area under

the uncorrelated background. One may show that Rp ≈ 1/(2π)
∫

dω |AC∗|2. At small

optical depth the paired rate scales quadratically with the optical depth and is much

smaller than the Stokes rate. At high optical depth the paired rate varies linearly
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Figure 4.10: Stokes, anti-Stokes (solid curve) and Paired (dashed curve) photon gen-
eration rates as a function of the optical depth. Ωc = 5γ13, γ12 = 0, ∆ω14 = 24γ13 and
Ωp/∆ω14 = 0.1. At optical depth of 100, the paired rate reaches 90% of the Stokes
rate.

with NσL and converges logarithmically to the Stokes emission rate.

In this chapter we describe the theory of paired photon generation in double-

Λ atomic system. With low parametric gain and high optical depth we show that

the system can produce highly correlated photon pairs. The shape of the intensity

correlation function and the emission bandwidth depend on the coupling laser Rabi

frequency and the optical depth of the atomic sample. Compared to the ideal SPDC,

paired photon generation in the double-Λ atomic system is affected by Raman gain in

the Stokes channel and EIT in the anti-Stokes channel. EIT, through the absorption

at the poles, cuts the emission bandwidth. In order to enter a regime where the EIT
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window is sufficiently large and therefore the emission bandwidth is controlled to a

large extent by the phase-matching process in the presence of large group delay, the

optical depth of the atomic sample has to be large NσL > 10. High optical depth

substantially reduces the influence of Langevin noise fluctuations on paired photon

generation so that the Stokes and anti-Stokes photons are generated mostly in pairs.

We therefore suggest the use of a cigar shaped atomic cloud with high optical depth

in the longitudinal direction.

4.7 Mathematical Apparatus

4.7.1 Collective slowly varying atomic operators

To describe the quantum properties of the atomic system we use the collective slowly

varying atomic operators [56, 57, 58, 46, 59] σ̂jk(z, t), defined as

σ̃jk(z, t) =
1

Nz

∑
i∈Nz

|j〉i〈k| exp (−iνjkt + ikjkz) , (4.26)

where the averaging is done over each atom i in a small interval ∆z that contains

large number of atoms Nz >> 1. The slowly varying variables are assumed to stay

unchanged over ∆z. ν41 = ω4 − ω1 + ∆ω14, ν42 = ω4 − ω2 + ∆ω14, ν14 = −ν41,

ν24 = −ν42, the rest of νjk = ωj−ωk. k31 = ~kas · ẑ, k42 = ~ks · ẑ, k41 = ~kp · ẑ, k32 = ~kc · ẑ
are the projections of the anti-Stokes, Stokes, pump and coupling k-vectors on the z

axis, k43 = k41 − k31, k21 = −k24 + k41, the rest of kjk = −kkj.

4.7.2 Heisenberg-Langevin equations

The full set of Heisenberg-Langevin equations for the four state system consists of 16

equations. Here, we show explicitly 10 of them, the other 6 for the adjoint off-diagonal
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atomic operators are not shown.

∂

∂t
σ̃44 = F̃44 − Γ4σ̃44 (4.27a)

+i

(
Ωp

2
σ̃41 + gsâsσ̃42 − gsâ

†
sσ̃24 −

Ω∗
p

2
σ̃14

)

∂

∂t
σ̃41 = F̃41 − (γ41 + i∆ω14) σ̃41 (4.27b)

+i

(
−gasâ

†
asσ̃43 + gsâ

†
sσ̃21 +

Ω∗
p

2
(σ̃11 − σ̃44)

)

∂

∂t
σ̃33 = F̃33 − Γ3σ̃33 (4.27c)

+i

(
gasâasσ̃31 +

Ωc

2
σ̃32 − gasâ

†
asσ̃13 − Ω∗

c

2
σ̃23

)

∂

∂t
σ̃32 = F̃32 − γ32σ̃32 (4.27d)

+i

(
−gasâ

†
asσ̃12 + gsâ

†
sσ̃34 +

Ω∗
c

2
(σ̃33 − σ̃22)

)

∂

∂t
σ̃22 = F̃22 + Γ32σ̃33 + Γ42σ̃44 (4.27e)

+i

(
−Ωc

2
σ̃32 − gsâsσ̃42 + gsâ

†
sσ̃24 +

Ω∗
c

2
σ̃23

)

∂

∂t
σ̃11 = F̃11 + Γ31σ̃33 + Γ41σ̃44 (4.27f)

+i

(
−gasâasσ̃31 − Ωp

2
σ̃41 + gasâ

†
asσ̃13 +

Ω∗
p

2
σ̃14

)
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∂

∂t
σ̃34 = F̃34 − (γ34 − i∆ω14) σ̃34 (4.28a)

+i

(
Ωp

2
σ̃31 + gsâsσ̃32 − gasâ

†
asσ̃14 − Ω∗

c

2
σ̃24

)

∂

∂t
σ̃31 = F̃31 − γ31σ̃31 (4.28b)

+i

(
gasâ

†
as (σ̃33 − σ̃11)− Ω∗

c

2
σ̃21 +

Ω∗
p

2
σ̃34

)

∂

∂t
σ̃24 = F̃24 − (γ24 − i∆ω14) σ̃24 (4.28c)

+i

(
Ωp

2
σ̃21 − Ωc

2
σ̃34 + gsâs (σ̃22 − σ̃44)

)

∂

∂t
σ̃21 = F̃21 − γ21σ̃21 (4.28d)

+i

(
−Ωc

2
σ̃31 − gsâsσ̃41 + gasâ

†
asσ̃23 +

Ω∗
p

2
σ̃24

)

Here, for simplicity, we assume that ∆k = (~kp +~kc−~ks−~kas) · ẑ = 0. In Eq. (4.27a)-

Eq. (4.28d) Γi is the total decay rate from state |i〉, Γij is the decay rate from state

|i〉 to state |j〉 and γij is the dephasing rate between state |i〉 and state |j〉. The

dephasing rates for the double-Λ system in the absence of the collisional dephasing

can be obtained from total decay rates Γ3 and Γ4 from state |3〉 and |4〉 to two ground

states |1〉 and |2〉 as

γ31 = γ32 =
Γ3

2
(4.29)

γ41 = γ42 =
Γ4

2
(4.30)

γ43 =
Γ3 + Γ4

2
(4.31)
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4.7.3 Linearization procedure

In zeroth order perturbation expansion, in which âs and âas go to zero, the Heisenberg-

Langevin equations for σ̃11, σ̃14, σ̃22, σ̃23, σ̃32, σ̃33, σ̃41, σ̃44 atomic operators are decou-

pled. Under the assumption that pump and coupling beams propagate without de-

pletion, we obtain the steady state solution for Eqs. (4.27a)-(4.27f) in form

σ̃0
jk = 〈σ̃0

jk〉+
∑

εmnF̃mn (4.32)

With the definition of the denominator as

T = Γ31

(
Γ2

4 + 4∆ω2
14 + 2 |Ωp|2

) |Ωc|2

+ Γ42

(
Γ2

3 + 2 |Ωc|2
) |Ωp|2 , (4.33)

the steady state expectation values for the zeroth order atomic operators are equal

to

〈
σ̃0

11

〉
=

Γ31 |Ωc|2
(
Γ2

4 + 4∆ω2
14 + |Ωp|2

)

T
(4.34a)

〈
σ̃0

22

〉
=

Γ42

(
Γ2

3 + |Ωc|2
) |Ωp|2

T
(4.34b)

〈
σ̃0

33

〉
=

Γ42 |ΩcΩp|2
T

(4.34c)

〈
σ̃0

44

〉
=

Γ31 |ΩcΩp|2
T

(4.34d)

〈
σ̃0

14

〉
= −Γ31 (2∆ω14 − iΓ4) |Ωc|2 Ωp

T
(4.34e)

〈
σ̃0

23

〉
=

iΓ3Γ42Ωc |Ωp|2
T

, (4.34f)

In the first order expansion, we substitute the zeroth order solution for the atomic

operators Eq. (4.32) into the remaining Heisenberg-Langevin equations for σ̃21, σ̃24,

σ̃31, σ̃34 and their adjoint. Neglecting higher order terms like εmnF̃mnâs or εmnF̃mnâ
†
as

we obtain the linearized equations. We note that the linearized Eqs.(4.28a)-(4.28d)

for σ̃21, σ̃24, σ̃31, σ̃34 represent an independent set of equations and can be decoupled.
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For clarity we write them in vector form

∂

∂t
σ̃1 = Aσ̃1 +Mâ + F̃1 (4.35)

where σ̃1 = {σ̃21, σ̃24, σ̃31, σ̃34}, F̃1 = {F̃21, F̃24, F̃31, F̃34}, â = {âs, â
†
as}, matrix A

depends on the dephasing rates γjk and pump and coupling laser rabi frequencies

Ωp, Ωc, matrix M depends on the zeroth order solution for the atomic operators

〈σ̃0
jk〉.

4.7.4 Langevin noise operators and their diffusion coefficients

By analogy with the collective slowly varying atomic operators σ̃jk(z, t), the collective

Langevin noise operators are defined as

F̃jk(z, t) =
1

Nz

∑
zi∈Nz

F̃
(i)
jk (t) (4.36)

We assume that a Langevin noise operator for a single atom is δ-correlated so that

〈F̃ (i)
jk (t)F̃

(j)
j′k′(t

′)〉 = D(i)
jk,j′k′(t)δ(t− t′)δij (4.37)

where 〈...〉 denotes the average over the reservoir, D(i)
jk,j′k′(t) is the atomic diffusion

coefficient for an ith atom.

Now we consider the second order correlations for the collective Langevin noise

operators

〈F̃jk(t, z)F̃j′k′(t
′, z′)〉 =

1

N2
z

∑
zi∈Nz

〈F̃ (i)
jk (t)F̃

(i)
j′k′(t

′)〉δzz′ (4.38)

Introducing the average atomic diffusion coefficient

Djk,j′k′(t, z) =
1

Nz

∑
zi∈Nz

D(i)
jk,j′k′(t) (4.39)
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the noise correlations can be expressed as

〈F̃jk(t, z)F̃j′k′(t
′, z′)〉 =

L

N
Djk,j′k′(t, z)δ(t− t′)δ(z − z′) (4.40)

In case Djk,j′k′(t, z) is independent of t, in frequency domain the noise correlations

are

〈F̃jk(ω, z)F̃j′k′(ω
′, z′)〉 =

L

2πN
Djk,j′k′δ(ω + ω′)δ(z − z′) (4.41)

The diffusion coefficients Djk,j′k′ can be obtained from the Heisenberg-Langevin

equations (4.27a)-(4.28d) using the generalized fluctuation-dissipation theorem [60,

61]. Here we show the diffusion coefficients for the Langevin noise operators of interest

F̃21, F̃24, F̃31, F̃34 and their adjoint F̃12, F̃42, F̃13, F̃43

D
αi,α

†
j

=




2 〈σ̃22〉 γ12 + 〈σ̃33〉Γ32 + 〈σ̃44〉Γ42 0 〈σ̃23〉 γ12 0

0 〈σ̃22〉Γ4 + 〈σ̃33〉Γ32 + 〈σ̃44〉Γ42 0 〈σ̃23〉Γ4

〈σ̃32〉 γ12 0 0 0

0 〈σ̃32〉Γ4 0 〈σ̃33〉Γ4




,

(4.42)

D
α
†
i ,αj

=




2 〈σ̃11〉 γ12 + 〈σ̃33〉Γ31 + 〈σ̃44〉Γ41 〈σ̃14〉 γ12 0 0

〈σ̃41〉 γ12 0 0 0

0 0 〈σ̃11〉Γ3 + 〈σ̃33〉Γ31 + 〈σ̃44〉Γ41 〈σ̃14〉Γ3

0 0 〈σ̃41〉Γ3 〈σ̃44〉Γ3




,

(4.43)

where αi denotes {21, 24, 31, 34} subspace for the atomic operators, α†i denotes

{12, 42, 13, 43} subspace for the adjoint atomic operators.




